AIMO 2015 Q8

Determine the number of non-negative integers x x that satisfy the equation

x 44 = x 45 . \left \lfloor \dfrac {x}{44} \right \rfloor = \left \lfloor \dfrac {x}{45} \right \rfloor.

(Note: if r r is any real number, then r \lfloor r \rfloor denotes the largest integer less than or equal to r r .)


The answer is 990.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Akshat Sharda
Dec 1, 2015

Let a = x 44 = x 45 a= \left \lfloor \frac {x}{44} \right \rfloor = \left \lfloor \frac {x}{45} \right \rfloor

0 x 43 44 values of x , a = 0 \underbrace{0≤x≤43}_{44 \text{ values of x}},a=0

45 x 87 43 values of x , a = 1 \underbrace{45≤x≤87}_{43 \text{ values of x}},a=1

90 x 131 42 values of x , a = 2 \underbrace{90≤x≤131}_{42 \text{ values of x}},a=2

.

.

.

1890 x 1891 2 values of x , a = 42 \underbrace{1890≤x≤1891}_{2 \text{ values of x}},a=42

1935 x 1935 1 value of x , a = 43 \underbrace{1935≤x≤1935}_{1 \text{ value of x}},a=43

So the number of non-negative values of x = 44 × 45 2 = 990 x=\frac{44×45}{2}=\boxed{990} .

Is zero included in non negative values?

Isn't 0 Neither positive not negative ...

Ganesh Ayyappan - 5 years, 6 months ago

Log in to reply

The question is asking for all non - negative values which means 0 , 1 , 2 , 3 , 4 , 0,1,2,3,4,\ldots

0 0 is a non - negative integer.

Akshat Sharda - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...