Ain't these 11th roots of unity ?

Algebra Level 4

k = 1 10 [ sin ( 2 k π 11 ) i cos ( 2 k π 11 ) ] = ? \displaystyle \sum_{k=1}^{10}\left[ \sin\left(\frac{2k\pi}{11}\right)-i\cos\left(\frac{2k\pi}{11}\right)\right]=\ ?

Note: i = 1 i=\sqrt{-1}


Practice the set Target JEE_Advanced - 2015 and boost up your preparation.
-1 1 0 -i i

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tanishq Varshney
Apr 1, 2015

take i -i common, the expression becomes

i ( k = 1 10 cos ( 2 k π 11 ) + i sin ( 2 k π 11 ) ) -i (\displaystyle \sum_{k=1}^{10} \cos(\frac{2k \pi}{11})+i \sin(\frac{2k \pi}{11}))

i k = 1 10 e i 2 k π 11 -i \displaystyle \sum_{k=1}^{10} e^{i \frac{2 k \pi}{11}} ..... ( 1 ) (1)

11 roots of unity 1 , x 1 , x 2 , x 3 . . . . . . x 10 1,x_{1},x_{2},x_{3}......x_{10}

Also 1 + x 1 + x 2 + . . . . x 10 = 0 1+x_{1}+x_{2}+....x_{10}=0

x 1 + x 2 + . . . . x 10 = 1 x_{1}+x_{2}+....x_{10}=-1

in ( 1 ) (1)

i ( x 1 + x 2 + x 3 + . . . . . x 10 ) -i (x_{1}+x_{2}+x_{3}+.....x_{10})

i \boxed{i}

@Sandeep Bhardwaj Sir,probably question needs one more bracket.

Ayush Verma - 5 years, 11 months ago

I did same.

Dev Sharma - 5 years, 5 months ago

Highly overrated ques

Gauri shankar Mishra - 5 years, 4 months ago

Check the solution in image.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...