If a 1 + b 1 = x 4 , find x − 2 a x + 2 a + x − 2 b x + 2 b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
a = 4 b − x x b
x + 2 a = x + ( 4 b − x 2 x b )
x − 2 a = x − ( 4 b − x 2 x b )
Multiplying each of the above by 4 b − x …
x − 2 a x + 2 a = 4 b x − x 2 − 2 b x 4 b x − x 2 + 2 b x = 2 b x − x 2 6 b x − x 2
Now that we have x − 2 a x + 2 a in terms of b , we can simplify the equation by adding x − 2 b x + 2 b as it is, without substitution.
Multiplying the top and bottom of x − 2 b x + 2 b by − x gives each of the fractions the same denominator, so the result is:
2 b x − x 2 + ( 2 b x − x 2 ) 6 b x − x 2 + ( − 2 b x − x 2 )
This simplifies to:
2 b x − x 2 4 b x − 2 x 2 , or 2 2 b x − x 2 2 b x − x 2
Cancelling out the like terms just leaves, 2, so the answer is 2 .
Solving the first equation we get x = a + b 4 a b . So 2 a x = a + b 2 b and 2 b x = a + b 2 a . Hence x − 2 a x + 2 a = b − a a + 3 b and x − 2 b x + 2 b = a − b 3 a + b . Therefore the required sum is a − b 2 ( a − b ) = 2
Problem Loading...
Note Loading...
Set Loading...
x − 2 a x + 2 a + x − 2 b x + 2 b = 1 − x 2 a 1 + x 2 a + 1 − x 2 b 1 + x 2 b = 1 − 2 a ( a 1 + b 1 ) 1 + 2 a ( a 1 + b 1 ) + 1 − 2 b ( a 1 + b 1 ) 1 + 2 b ( a 1 + b 1 ) = 2 1 − 2 b a 2 3 + 2 b a + 2 1 − 2 a b 2 3 + 2 a b = b − a 3 b + a + a − b 3 a + b = 3 + b − a 4 a + 3 + a − b 4 b = 6 − a − b 4 a − 4 b = 6 − 4 = 2