Al gebr oal mu'kabla

Algebra Level pending

If 1 a + 1 b = 4 x \dfrac{1}{a}+\dfrac{1}{b}=\dfrac{4}{x} , find x + 2 a x 2 a + x + 2 b x 2 b \dfrac{x+2a}{x-2a}+\dfrac{x+2b}{x-2b} .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Nov 12, 2019

x + 2 a x 2 a + x + 2 b x 2 b = 1 + 2 a x 1 2 a x + 1 + 2 b x 1 2 b x = 1 + a 2 ( 1 a + 1 b ) 1 a 2 ( 1 a + 1 b ) + 1 + b 2 ( 1 a + 1 b ) 1 b 2 ( 1 a + 1 b ) = 3 2 + a 2 b 1 2 a 2 b + 3 2 + b 2 a 1 2 b 2 a = 3 b + a b a + 3 a + b a b = 3 + 4 a b a + 3 + 4 b a b = 6 4 a 4 b a b = 6 4 = 2 \begin{aligned} \frac {x+2a}{x-2a} + \frac {x+2b}{x-2b} & = \frac {1+\frac {2a}x}{1-\frac {2a}x} + \frac {1+\frac {2b}x}{1-\frac {2b}x} \\ & = \frac {1+\frac a2\left(\frac 1a + \frac 1b\right)}{1-\frac a2\left(\frac 1a + \frac 1b\right)} + \frac {1+\frac b2\left(\frac 1a + \frac 1b\right)}{1-\frac b2\left(\frac 1a + \frac 1b\right)} \\ & = \frac {\frac 32 + \frac a{2b}}{\frac 12 - \frac a{2b}} + \frac {\frac 32 + \frac b{2a}}{\frac 12 - \frac b{2a}} \\ & = \frac {3b+a}{b-a} + \frac {3a+b}{a-b} \\ & = 3 + \frac {4a}{b-a} + 3 + \frac {4b}{a-b} \\ & = 6 - \frac {4a-4b}{a-b} \\ & = 6 - 4 \\ & = \boxed 2 \end{aligned}

Callie Ferguson
Nov 12, 2019

a = x b 4 b x a=\frac{xb}{4b-x}

x + 2 a = x + ( 2 x b 4 b x ) x+2a = x + (\frac{2xb}{4b-x})

x 2 a = x ( 2 x b 4 b x ) x-2a = x - (\frac{2xb}{4b-x})

Multiplying each of the above by 4 b x 4b-x

x + 2 a x 2 a = 4 b x x 2 + 2 b x 4 b x x 2 2 b x = 6 b x x 2 2 b x x 2 \frac{x+2a}{x-2a}=\frac{4bx-x^2+2bx}{4bx - x^2 -2bx} = \frac{6bx - x^2}{2bx - x^2}

Now that we have x + 2 a x 2 a \frac{x+2a}{x-2a} in terms of b b , we can simplify the equation by adding x + 2 b x 2 b \frac{x+2b}{x-2b} as it is, without substitution.

Multiplying the top and bottom of x + 2 b x 2 b \frac{x+2b}{x-2b} by x -x gives each of the fractions the same denominator, so the result is:

6 b x x 2 + ( 2 b x x 2 ) 2 b x x 2 + ( 2 b x x 2 ) \frac{6bx - x^2 + (-2bx - x^2)}{2bx - x^2 + (2bx - x^2)}

This simplifies to:

4 b x 2 x 2 2 b x x 2 \frac{4bx - 2x^2}{2bx-x^2} , or 2 2 b x x 2 2 b x x 2 2\frac{2bx - x^2}{2bx-x^2}

Cancelling out the like terms just leaves, 2, so the answer is 2 .

Solving the first equation we get x = 4 a b a + b x=\dfrac{4ab}{a+b} . So x 2 a = 2 b a + b \dfrac{x}{2a}=\dfrac{2b}{a+b} and x 2 b = 2 a a + b \dfrac{x}{2b}=\dfrac{2a}{a+b} . Hence x + 2 a x 2 a = a + 3 b b a \dfrac{x+2a}{x-2a}=\dfrac{a+3b}{b-a} and x + 2 b x 2 b = 3 a + b a b \dfrac{x+2b}{x-2b}=\dfrac{3a+b}{a-b} . Therefore the required sum is 2 ( a b ) a b = 2 \dfrac{2(a-b)}{a-b}=\boxed {2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...