If 1 + x − 1 − x 1 + x + 1 − x = R , then what is the value of 2 R 2 − x 4 R ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Relevant wiki: Componendo and Dividendo
1 + x − 1 − x 1 + x + 1 − x = R
⇒ ( 1 + x + 1 − x ) − ( 1 + x − 1 − x ) ( 1 + x + 1 − x ) + ( 1 + x − 1 − x ) = R − 1 R + 1
⇒ 1 − x + 1 − x 1 + x + 1 + x = R − 1 R + 1
⇒ 2 1 − x 2 1 + x = R − 1 R + 1
⇒ 1 − x 1 + x = R − 1 R + 1
⇒ ( 1 − x ) 2 ( 1 + x ) 2 = ( R − 1 ) 2 ( R + 1 ) 2
⇒ 1 − x 1 + x = R 2 − 2 R + 1 2 R 2 + 2 R + 1 2
⇒ 1 + x − 1 + x 1 + x + 1 − x = R 2 + 2 R + 1 2 − R 2 + 2 R − 1 2 R 2 + 2 R + 1 2 + R 2 − 2 R + 1 2
⇒ 2 x 2 = 4 R 2 R 2 + 2
⇒ x 1 = 4 R 2 ( R 2 + 1 )
⇒ x 1 = 2 R R 2 + 1
⇒ x 2 R = R 2 + 1
⇒ 2 ( x 2 R ) = 2 ( R 2 + 1 )
⇒ x 4 R = 2 R 2 + 2
⟹ − 2 = 2 R 2 − x 4 R
Hence 2 R 2 − x 4 R = − 2
In this step: 1 + x − 1 + x 1 + x + 1 − x = R 2 + 2 R + 1 2 − R 2 + 2 R − 1 2 R 2 + 2 R + 1 2 + R 2 − 2 R + 1 2 , I think there is a mistake in the denominator of RHS based on the previous step in your solution.
Using a direct approach R = 2 x ( 1 + x + 1 − x ) ( 1 + x + 1 − x ) after rationalizing the denominator simplifies to R = x 1 + 1 − x 2
R 2 = ( x 1 + 1 − x 2 ) 2 = x 2 2 + 2 1 − x 2 − x 2
so 2 R 2 − x 4 R
= x 2 2 ( 2 + 2 1 − x 2 − x 2 ) − 4 ( 1 + 1 − x 2 ) = − 2
Problem Loading...
Note Loading...
Set Loading...
R R x − 1 R 2 x 2 − 2 R x + 1 R 2 x 2 − 2 R x 2 R − x 4 R = 1 + x − 1 − x 1 + x + 1 − x = ( 1 + x ) 2 − ( 1 − x ) 2 ( 1 + x + 1 − x ) 2 = x 1 + 1 − x 2 = 1 − x 2 = 1 − x 2 = − x 2 = − 2 Multiplying up and down by 1 + x + 1 − x Rearranging Squaring both sides Multiplying both sides by x 2 2