Al-Khwarizmi, the father of algebra

Algebra Level 3

If 1 + x + 1 x 1 + x 1 x = R \dfrac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}=R , then what is the value of 2 R 2 4 R x 2R^{2}-\dfrac{4R}{x} ?


The answer is -2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Jan 14, 2018

R = 1 + x + 1 x 1 + x 1 x Multiplying up and down by 1 + x + 1 x = ( 1 + x + 1 x ) 2 ( 1 + x ) 2 ( 1 x ) 2 = 1 + 1 x 2 x Rearranging R x 1 = 1 x 2 Squaring both sides R 2 x 2 2 R x + 1 = 1 x 2 R 2 x 2 2 R x = x 2 Multiplying both sides by 2 x 2 2 R 4 R x = 2 \begin{aligned} R & = \color{#3D99F6} \frac {\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}} & \small \color{#3D99F6} \text{Multiplying up and down by }{\sqrt{1+x}+\sqrt{1-x}} \\ & = \color{#3D99F6} \frac {\left(\sqrt{1+x}+\sqrt{1-x}\right)^2}{\left(\sqrt{1+x}\right)^2-\left(\sqrt{1-x}\right)^2} \\ & = \frac {1+\sqrt{1-x^2}}x & \small \color{#3D99F6} \text{Rearranging} \\ Rx - 1 & = \sqrt{1-x^2} & \small \color{#3D99F6} \text{Squaring both sides} \\ R^2x^2 - 2Rx + 1 & = 1-x^2 \\ R^2x^2 - 2Rx & = -x^2 & \small \color{#3D99F6} \text{Multiplying both sides by }\frac 2{x^2} \\ 2R - \frac {4R}x & = \boxed{-2} \end{aligned}

Abhinav Jain
Jan 15, 2018

Munem Shahriar
Jan 14, 2018

Relevant wiki: Componendo and Dividendo

1 + x + 1 x 1 + x 1 x = R \dfrac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}=R

( 1 + x + 1 x ) + ( 1 + x 1 x ) ( 1 + x + 1 x ) ( 1 + x 1 x ) = R + 1 R 1 \Rightarrow \dfrac{(\sqrt{1+x}+\sqrt{1-x}) + (\sqrt{1+x}-\sqrt{1-x})}{(\sqrt{1+x}+\sqrt{1-x}) - (\sqrt{1+x}-\sqrt{1-x})} = \dfrac{R+1}{R-1}

1 + x + 1 + x 1 x + 1 x = R + 1 R 1 \Rightarrow \dfrac{\sqrt{1+x}+ \sqrt{1+x}}{\sqrt{1-x}+\sqrt{1-x}} = \dfrac{R+1}{R-1}

2 1 + x 2 1 x = R + 1 R 1 \Rightarrow\dfrac{2\sqrt{1+x}}{2\sqrt{1-x}} = \dfrac{R+1}{R-1}

1 + x 1 x = R + 1 R 1 \Rightarrow \dfrac{\sqrt{1+x}}{\sqrt{1-x}} = \dfrac{R+1}{R-1}

( 1 + x ) 2 ( 1 x ) 2 = ( R + 1 ) 2 ( R 1 ) 2 \Rightarrow\dfrac{(\sqrt{1+x})^2}{(\sqrt{1-x})^2} =\dfrac{(R+1)^2}{(R-1)^2}

1 + x 1 x = R 2 + 2 R + 1 2 R 2 2 R + 1 2 \Rightarrow\dfrac{1+x}{1-x} = \dfrac{R^2+2R+1^2}{R^2-2R+1^2}

1 + x + 1 x 1 + x 1 + x = R 2 + 2 R + 1 2 + R 2 2 R + 1 2 R 2 + 2 R + 1 2 R 2 + 2 R 1 2 \Rightarrow\dfrac{1+x+1-x}{1+x-1+x} = \dfrac{R^2+2R+1^2 +R^2-2R+1^2 }{R^2+2R+1^2 - R^2+2R-1^2 }

2 2 x = 2 R 2 + 2 4 R \Rightarrow\dfrac{2}{2x} = \dfrac{2R^2 + 2}{4R}

1 x = 2 ( R 2 + 1 ) 4 R \Rightarrow\dfrac1x = \dfrac{2(R^2+1)}{4R}

1 x = R 2 + 1 2 R \Rightarrow\dfrac 1x = \dfrac{R^2 + 1}{2R}

2 R x = R 2 + 1 \Rightarrow\dfrac{2R}{x} = R^2+1

2 ( 2 R x ) = 2 ( R 2 + 1 ) \Rightarrow2\left(\dfrac{2R}{x}\right) = 2(R^2+1)

4 R x = 2 R 2 + 2 \Rightarrow\dfrac{4R}{x} = 2R^2+2

2 = 2 R 2 4 R x \implies -2 = 2R^2 - \dfrac{4R}{x}

Hence 2 R 2 4 R x = 2 2R^2 - \dfrac{4R}{x} = \boxed{-2}

In this step: 1 + x + 1 x 1 + x 1 + x = R 2 + 2 R + 1 2 + R 2 2 R + 1 2 R 2 + 2 R + 1 2 R 2 + 2 R 1 2 \dfrac{1+x+1-x}{1+x-1+x} = \dfrac{R^2+2R+1^2 +R^2-2R+1^2 }{R^2+2R+1^2 - R^2+2R-1^2 } , I think there is a mistake in the denominator of RHS based on the previous step in your solution.

Anuj Shikarkhane - 2 years, 12 months ago
Geoff Taylor
Jan 15, 2018

Using a direct approach R = ( 1 + x + 1 x ) ( 1 + x + 1 x ) 2 x R=\frac { \left( \sqrt { 1+x } +\sqrt { 1-x } \right) (\sqrt { 1+x } +\sqrt { 1-x } ) }{ 2x } after rationalizing the denominator simplifies to R = 1 + 1 x 2 x R=\frac { 1+\sqrt { 1-{ x }^{ 2 } } }{ x }

R 2 = ( 1 + 1 x 2 x ) 2 = 2 + 2 1 x 2 x 2 x 2 { R }^{ 2 }={ \left( \frac { 1+\sqrt { 1-{ x }^{ 2 } } }{ x } \right) }^{ 2 }=\frac { 2+2\sqrt { 1-{ x }^{ 2 } } -{ x }^{ 2 } }{ { x }^{ 2 } }

so 2 R 2 4 R x 2{ R }^{ 2 }-\frac { 4R }{ x }

= 2 ( 2 + 2 1 x 2 x 2 ) 4 ( 1 + 1 x 2 ) x 2 = 2 \frac { 2\left( 2+2\sqrt { 1-{ x }^{ 2 } } -{ x }^{ 2 } \right) -4\left( 1+\sqrt { 1-{ x }^{ 2 } } \right) }{ { x }^{ 2 } } =\boxed { -2 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...