An integral problem for Nihar

Calculus Level 4

Evaluate:

0 ln 4 e t e 2 t + 9 d t \large\int_{0}^{\ln{4}}\dfrac{e^t}{\sqrt{e^{2t}+9}} \, dt

Provide the answer to 3 decimal places.


The answer is 0.771.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

0 ln 4 e t e 2 t + 9 . d t Let y = e t d y = e t . d t If t = 0 , y = 1 ; If t = ln 4 , y = 4. \large \displaystyle \int_0^{\ln 4} \frac{e^t}{\sqrt{e^{2t} + 9}} .dt\\ \large \displaystyle \text{Let } y = e^t \implies dy = e^t . dt\\ \large \displaystyle \text{If } t = 0, y = 1; \text{If } t = \ln 4, y = 4.

1 4 d y t 2 + 9 = 1 4 d y t 2 + 3 2 = [ ln ( y + y 2 + 3 2 ) ] 1 4 = ln ( 4 + 16 + 9 ) ln ( 1 + 1 + 9 ) = ln 9 ln ( 1 + 10 ) = ln 9 1 + 10 0.771 \large \displaystyle \int_1^4 \frac{dy}{\sqrt{t^2 + 9}} = \int_1^4 \frac{dy}{\sqrt{t^2 + 3^2}}\\ \large \displaystyle = \left[\ln (y + \sqrt{y^2 + 3^2}) \right]_1^4\\ \large \displaystyle = \ln (4 + \sqrt{16+9}) - \ln (1 + \sqrt{1+9})\\ \large \displaystyle = \ln 9 - \ln (1 + \sqrt{10}) = \ln \frac{9}{1+\sqrt{10}} \approx \boxed{0.771}

Simple and elegant solution,+1!

Parth Lohomi - 5 years, 1 month ago
Nihar Mahajan
Apr 23, 2016

Since d d x sinh 1 x = 1 x 2 + 1 \dfrac{d}{dx}\sinh^{-1} x = \dfrac{1}{\sqrt{x^2+1}} , note that by differentiation - Chain Rule , d d x sinh 1 e x 3 = e x e 2 x + 9 \dfrac{d}{dx} \sinh^{-1} \dfrac{e^x}{3} = \dfrac{e^x}{\sqrt{e^{2x}+9}} which is exactly our integral! Thus we have e x e 2 x + 9 = sinh 1 e x 3 \displaystyle\int \dfrac{e^x}{\sqrt{e^{2x}+9}}=\sinh^{-1} \dfrac{e^x}{3} and substituting the boundaries we have I = sinh 1 4 3 sinh 1 1 3 0.771 I=\sinh^{-1} \dfrac{4}{3} - \sinh^{-1} \dfrac{1}{3} \approx \boxed{0.771} .

Another method would be to use two substitutions: y = e t y=e^t first and then y = 3 tan t y=3\tan t .

Moderator note:

It helps to recognize the form of the antiderivative, and tweaking it to fit the expression that we have.

0 ln ( 4 ) e t e 2 t + 9 d x = sinh 1 ( e t 3 ) Indefinite integral = ln ( 3 ) c s c h 1 ( 3 ) = 0.77116... \begin{aligned} \int_{0}^{\ln(4)}\frac{e^t}{\sqrt{e^{2t}+9}}\,dx &= \sinh^{-1}\left( \frac{e^t}{3}\right) \quad\quad\quad\quad{\text{Indefinite integral}}\\&= \ln(3) - \ce{csch}^{-1}(3) \\&= 0.77116. . . \space \space \square\end{aligned}

ADIOS!!! \LARGE \text{ADIOS!!!}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...