Alegbra hamburger

Algebra Level 3

If x 2017 = 2019 x^{2017}=2019 , find the value of the below expression.

( x x 2 x 3 x 4 x 2013 x 2014 x 2015 x 2016 x 2016 + x 2015 + x 2014 + x 2013 + + x 4 + x 3 + x 2 x ) 2020 ( x x 2 + x 3 x 4 + + x 2013 x 2014 + x 2015 x 2016 x 2016 x 2015 + x 2014 x 2013 + + x 4 x 3 + x 2 x ) 2018 \frac{\left(\dfrac{x-x^2-x^3-x^4-\cdots-x^{2013}-x^{2014}-x^{2015}-x^{2016}}{x^{2016}+x^{2015}+x^{2014}+x^{2013}+\cdots+x^4+x^3+x^2-x}\right)^{-2020}}{\left(\dfrac{x-x^2+x^3-x^4+\cdots+x^{2013}-x^{2014}+x^{2015}-x^{2016}}{x^{2016}-x^{2015}+x^{2014}- x^{2013}+\cdots+x^4-x^3+x^2-x}\right)^{-2018}}


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tommy Li
Jun 28, 2016

( x x 2 x 3 x 4 x 2013 x 2014 x 2015 x 2016 x 2016 + x 2015 + x 2014 + x 2013 + + x 4 + x 3 + x 2 x ) 2020 ( x x 2 + x 3 x 4 + + x 2013 x 2014 + x 2015 x 2016 x 2016 x 2015 + x 2014 x 2013 + + x 4 x 3 + x 2 x ) 2018 \frac{\left(\dfrac{x-x^2-x^3-x^4-\dots-x^{2013}-x^{2014}-x^{2015}-x^{2016}}{x^{2016}+x^{2015}+x^{2014}+x^{2013}+\dots+x^4+x^3+x^2-x}\right)^{-2020}}{\left(\dfrac{x-x^2+x^3-x^4+\dots+x^{2013}-x^{2014}+x^{2015}-x^{2016}}{x^{2016}-x^{2015}+x^{2014}- x^{2013}+\dots+x^4-x^3+x^2-x}\right)^{-2018}}

= ( x x 2 x 3 x 4 x 2013 x 2014 x 2015 x 2016 ( x x 2 x 3 x 4 x 2013 x 2014 x 2015 x 2016 ) ) 2020 ( x x 2 + x 3 x 4 + + x 2013 x 2014 + x 2015 x 2016 ( x x 2 + x 3 x 4 + + x 2013 x 2014 + x 2015 x 2016 ) ) 2018 =\frac{\left(\dfrac{x-x^2-x^3-x^4-\dots-x^{2013}-x^{2014}-x^{2015}-x^{2016}}{-(x-x^2-x^3-x^4-\dots-x^{2013}-x^{2014}-x^{2015}-x^{2016})}\right)^{-2020}}{\left(\dfrac{x-x^2+x^3-x^4+\dots+x^{2013}-x^{2014}+x^{2015}-x^{2016}}{-(x-x^2+x^3-x^4+\dots+x^{2013}-x^{2014}+x^{2015}-x^{2016})}\right)^{-2018}}

= ( 1 ) 2018 ( 1 ) 2020 =\frac{(-1)^{2018}}{(-1)^{2020}}

= 1 1 =\frac{1}{1}

= 1 =1

You do not need to find the exact value of x x , but I have to make sure that x 0 x\neq0 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...