Alert: It's Alternating!

Algebra Level 2

log 5 ( n = 1 100 ( 1 ) n ( 5 n 1 ) 10 ) = ? \log_{5}\left( \displaystyle \sum_{n=1}^{100} \frac{(-1)^n (5n-1)}{10} \right)=\ ?


The answer is 2.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Chew-Seong Cheong
Aug 30, 2020

S = n = 1 100 ( 1 ) n ( 5 n 1 ) 10 = n = 1 100 ( 1 ) n ( n 2 1 10 ) = ( 1 2 + 1 3 2 + 2 5 2 + 3 99 2 + 50 ) + ( 1 10 1 10 + 1 10 1 10 + 1 10 1 10 + 1 10 ) = 1 2 ( 1 + 3 + 5 + + 99 ) + ( 1 + 2 + 3 + + 50 ) + 0 = 1 2 50 2 ( 1 + 99 ) + 50 ( 50 + 1 ) 2 = 1250 + 1275 = 25 \begin{aligned} S & = \sum_{n=1}^{100} \frac {(-1)^n(5n-1)}{10} \\ & = \sum_{n=1}^{100} (-1)^n\left(\frac n2 - \frac 1{10}\right) \\ & = \left(-\frac 12 + 1 - \frac 32 + 2 - \frac 52 + 3 - \cdots - \frac {99}2 + 50\right) + \left(\frac 1{10} - \frac 1{10} + \frac 1{10} - \frac 1{10} + \frac 1{10} - \frac 1{10} + \cdots - \frac 1{10} \right) \\ & = - \frac 12 (1+3+5+\cdots + 99) + (1+2+3+\cdots + 50) + 0 \\ & = - \frac 12 \cdot \frac {50}2 (1+99) + \frac {50(50+1)}2 \\ & = - 1250 + 1275 = 25 \end{aligned}

Therefore log 5 S = log 5 25 = 2 \log_5 S = \log_5 25 = \boxed 2 .

Nice solution Sir(+1)!

Vinayak Srivastava - 9 months, 2 weeks ago

Log in to reply

Glad that you like it.

Chew-Seong Cheong - 9 months, 2 weeks ago
Mahdi Raza
Aug 30, 2020
  • We first look at the summation part. It gets really easy when we split these into even ( 2 n ) (2n) and odd ( 2 n 1 ) (2n-1) and negative sign-ed

n = 1 100 ( 1 ) n ( 5 n 1 ) 10 = n = 1 50 ( 5 ( 2 n ) 1 ) 10 1 50 ( 5 ( 2 n 1 ) 1 ) 10 ( 1 ) \sum_{n=1}^{100} \dfrac{(-1)^n (5n-1)}{10} = \blue{\sum_{n=1}^{50} \dfrac{(5(2n)-1)}{10}} - \orange{\sum_{1}^{50} \dfrac{(5(2n-1)-1)}{10}} \quad \ldots (1)

  • Now, we evaluate both of these separately

n = 1 50 ( 5 ( 2 n ) 1 ) 10 = n 2 ( a + l ) 10 = 50 20 ( 9 + 499 ) \blue{\sum_{n=1}^{50} \dfrac{(5(2n)-1)}{10}} =\dfrac{\frac{n}{2}(a+l)}{10} = \blue{\dfrac{50}{20}{(9 + 499)}}

1 50 ( 5 ( 2 n 1 ) 1 ) 10 = n 2 ( a + l ) 10 = 50 20 ( 4 + 494 ) \orange{\sum_{1}^{50} \dfrac{(5(2n-1)-1)}{10}} = \dfrac{\frac{n}{2}(a+l)}{10} = \orange{\dfrac{50}{20}{(4 + 494)}}

  • We substitute back into equation ( 1 ) (1)

n = 1 100 ( 1 ) n ( 5 n 1 ) 10 = 50 20 ( 9 + 499 ) 50 20 ( 4 + 494 ) = 5 2 ( 10 ) = 25 \sum_{n=1}^{100} \dfrac{(-1)^n (5n-1)}{10} = \blue{\dfrac{50}{20}{(9 + 499)}} - \orange{\dfrac{50}{20}{(4 + 494)}} = \dfrac{5}{2}(10) = 25

  • log 5 \log_{5} of the entire expression at last

log 5 ( n = 1 100 ( 1 ) n ( 5 n 1 ) 10 ) = log 5 25 = 2 \log_{5} \bigg(\sum_{n=1}^{100} \dfrac{(-1)^n (5n-1)}{10} \bigg) = \log_{5} 25 = \boxed{2}

Nice solution(+1)!

Vinayak Srivastava - 9 months, 2 weeks ago

For odd n n 's, 1 n { -1 }^{ n } would be -1 only, so the numerator would be just 1 × ( 5 n 1 ) = 5 n + 1 -1 \times (5n-1)=-5n+1 and for even n n 's, 1 n { -1 }^{ n } would be 1, so the numerator would be 1 × ( 5 n 1 ) = 5 n 1 1 \times (5n-1)=5n-1 .

Also, there are 50 even numbers and 50 odd numbers in the first 100 natural numbers, which means for every even number there is an odd number. Suppose, there is an even number 2 n 2n so as per the function the output or the term would be 5 ( 2 n ) 1 10 \dfrac{ 5(2n)-1 }{ 10 } and for an odd number before it, i.e 2 n 1 2n-1 the term would be 5 ( 2 n ) + 1 10 \dfrac{ -5(2n)+1 }{ 10 } as we saw the denominator for an odd term. If we add both we obtain the sum as,

5 ( 2 n ) + 1 10 + 5 ( 2 n ) 1 10 = 5 ( 2 n 1 ) + 1 + 5 ( 2 n ) 1 10 = 5 ( 1 ) 10 = 5 10 = 1 2 \frac{ -5(2n)+1 }{ 10 }+\frac{ 5(2n)-1 }{ 10 }=\frac{ -5(2n-1)+1+5(2n)-1 }{ 10 }=\frac{ -5(-1) }{ 10 }=\frac{ 5 }{ 10 }=\frac{ 1 }{ 2 }

So for each odd-even pair, the sum is 1 2 \frac{ 1 }{ 2 } , as there are 50 such pairs for all the first 100 natural numbers, we are adding 1 2 \dfrac{ 1 }{ 2 } 50 times, which is 1 2 × 50 = 25 \frac{ 1 }{ 2 } \times 50=25 .

So, log 5 25 \log _{ 5 }{ 25 } is 2 as 5 2 = 25 { 5 }^{ 2 }=25

Excellent solution(+1)! Did you type the whole latex on phone? This requires hardwork.

Vinayak Srivastava - 9 months, 2 weeks ago

Log in to reply

Thanks! Yes, I typed it on the phone but using Chrome not using the app.

Siddharth Chakravarty - 9 months, 2 weeks ago

Log in to reply

Wow! I know how hard it is, you are great! :)

Vinayak Srivastava - 9 months, 2 weeks ago

Great Solution

A Former Brilliant Member - 9 months, 2 weeks ago

Log in to reply

Thank you :)

Siddharth Chakravarty - 9 months, 2 weeks ago
Richard Costen
Aug 30, 2020

Every 2 terms in the summation subtract to 1 2 \frac12 . Thus the summation equals 50 terms of 1 2 \frac12 , which is 25. log 5 25 = 2 \log_5 25 = \boxed{2} .

Yes, that's the basic thought I used. Thanks for sharing!

Vinayak Srivastava - 9 months, 2 weeks ago
Pop Wong
Aug 31, 2020

( n = 1 100 ( 1 ) n ( 5 n 1 ) 10 ) = ( n = 1 50 ( 1 ) 2 n 1 ( 5 ( 2 n 1 ) 1 ) 10 + ( 1 ) 2 n ( 5 ( 2 n ) 1 ) 10 ) = ( n = 1 50 ( 1 ) ( 10 n 5 1 ) 10 + ( 10 n 1 ) 10 ) = ( n = 1 50 ( 10 n + 5 + 1 ) + ( 10 n 1 ) 10 ) = ( n = 1 50 5 10 ) = 50 5 10 = 25 log 5 ( n = 1 100 ( 1 ) n ( 5 n 1 ) 10 ) = log 5 ( 25 ) = 2 \begin{aligned} \left( \displaystyle\sum_{n=1}^{100} \cfrac{(-1)^n (5n-1)}{10} \right) &= \left( \displaystyle\sum_{n=1}^{50} \cfrac{(-1)^{2n-1} (5(2n-1)-1)}{10} + \cfrac{(-1)^{2n} (5(2n)-1)}{10} \right) \\ &= \left( \displaystyle\sum_{n=1}^{50} \cfrac{(-1) (10n-5-1)}{10} + \cfrac{ (10n-1)}{10} \right) \\ &= \left( \displaystyle\sum_{n=1}^{50} \cfrac{ (-10n+5+1) + (10n - 1)}{10} \right) \\ &= \left( \displaystyle\sum_{n=1}^{50} \cfrac{5}{10} \right) = 50 \cdot \cfrac{5}{10} = 25 \\ \log_5 \left( \displaystyle\sum_{n=1}^{100} \cfrac{(-1)^n (5n-1)}{10} \right) &= \log_5 (25) = \boxed{2} \end{aligned}

Taking the summation part only we see

n = 1 ( 1 ) 1 ( 5 1 1 ) 10 0.4 n=1 \rightarrow \dfrac{(-1)^1(5*1 - 1)}{10} \rightarrow -0.4

n = 2 ( 1 ) 2 ( 5 2 1 ) 10 0.9 n=2 \rightarrow \dfrac{(-1)^2(5*2 - 1)}{10} \rightarrow 0.9

n = 3 ( 1 ) 3 ( 5 3 1 ) 10 1.4 n=3 \rightarrow \dfrac{(-1)^3(5*3 - 1)}{10} \rightarrow -1.4

n = 4 ( 1 ) 4 ( 5 4 1 ) 10 1.9 n=4 \rightarrow \dfrac{(-1)^4(5*4 - 1)}{10} \rightarrow 1.9

. . . . . . . . ........

n = 99 ( 1 ) 99 ( 5 99 1 ) 10 49.4 n=99 \rightarrow \dfrac{(-1)^{99}(5*99 - 1)}{10} \rightarrow -49.4

n = 100 ( 1 ) 100 ( 5 100 1 ) 10 49.9 n=100 \rightarrow \dfrac{(-1)^{100}(5*100 - 1)}{10} \rightarrow 49.9

Since the values alternate between positive and negative, we'll make two arithmetic progressions, one where n n has been odd in terms and another with positive n n , and take two distinct sums.

A P 1 0.4 , 1.4 , . . . . . . , 49.4 S 50 = 50 2 [ 0.4 49.4 ] = 1245 AP_1 \rightarrow -0.4, -1.4, ......, -49.4 \rightarrow S_{50}= \frac{50}{2}[-0.4-49.4]= -1245

A P 2 0.9 , 1.9 , . . . . . . , 49.9 S 50 = 50 2 [ 0.9 + 49.9 ] = 1270 AP_2 \rightarrow 0.9, 1.9, ......, 49.9 \rightarrow S_{50} = \frac{50}{2}[0.9+49.9]= 1270

Now we can determine the whole sum= 1270 + ( 1245 ) = 25 1270+ (-1245) = 25

Since 5 2 = 25 5^2 =25 , log 5 25 = 2 \text{log}_5 25 =\boxed{2}

For exponents with more than 1 digit, you should use {} otherwise it will come wrong.

Vinayak Srivastava - 9 months, 2 weeks ago

Log in to reply

Oh I didn't notice, I fixed it now.

A Former Brilliant Member - 9 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...