Algebra + trigo problems

Geometry Level 3

If a k > 0 { a }_{ k } > 0 such that 1 2015 a k = 1 \sum _{ 1 }^{ 2015 }{ { a }_{ k } } \quad =\quad 1

Let E = 1 2015 a k 2 E = \sum _{ 1 }^{ 2015 }{ { { a }_{ k } }^{ 2 } } .

Let the minimum value of E E be x x .

Find the value of sin ( 120900 x ) cos ( 60450 x ) = ? \sin { (120900x) } -\cos { (60450x) } = ?

Note: assume that angles are in degrees.


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Sandeep Rathod
Dec 11, 2014

Titu's leema,

a 1 2 1 + . . . . . . . . . a 2015 2 1 ( a 1 + . . . . a 2015 ) 2 1 + 1 + . . . . . . 2015 t i m e s \dfrac{a_{1}^{2}}{1} + ......... \dfrac{a_{2015}^{2}}{1} \geq \dfrac{(a_{1} + .... a_{2015})^{2}}{1 + 1 + ...... 2015times}

minmum value x = 1 2015 x = \dfrac{1}{2015}

60450 = 120900 2 , 60450 2015 = 60 60450 = \dfrac{120900}{2} , \dfrac{60450}{2015} = 60

s i n 6 0 = c o s 3 0 sin60^{\circ} = cos30^{\circ}

Nice @sandeep Rathod Sir ! I solved it by using the fact for positive variables that :

R M S v a l u e o f n u m b e r s A v e r a g e o f n u m b e r s { RMS }_{ value\quad of\quad numbers }\quad \ge \quad { Average }_{ of\quad numbers } .
(Because I r m s I a v e r a g e { I }_{ rms }\quad \ge \quad { I }_{ average } . where 'I' means current and all of us Prove it in our Schools in Physics Chapter " Alternating Current" )

1 2015 a k 2 2015 1 2015 a k 2015 E m i n = 1 2015 \sqrt { \frac { \sum _{ 1 }^{ 2015 }{ { { a }_{ k } }^{ 2 } } }{ 2015 } } \quad \ge \quad \frac { \sum _{ 1 }^{ 2015 }{ { a }_{ k } } \quad }{ 2015 } \\ \\ { E }_{ min }\quad =\quad \cfrac { 1 }{ 2015 } .

Deepanshu Gupta - 6 years, 6 months ago

Log in to reply

Once again a different approach, thanks , learnt a new thing

upvoted , nice notes are shared by you

i am not able to understand one thing in your note - Prove this beautiful result , nice you got an equation for minimum perimeter but in this case what can you say about the area? @Deepanshu Gupta

sandeep Rathod - 6 years, 6 months ago

your reasoning was awesome :)

Karan Shekhawat - 6 years, 6 months ago

How can you take the square out because (a^2 + b^2) does not equal (a+b)^2

Dhruv Shah - 6 years, 5 months ago
Adarsh Kumar
Dec 11, 2014

The key technique here is to use Titu’s Lemma.Titu’s Lemma works this way \text{The key technique here is to use Titu's Lemma.Titu's Lemma works this way} : a 1 2 b 1 + a 2 2 b 2 + a 3 2 b n + . . . . a n 2 b n ( a 1 + a 2 + a 3 + . . . . . . a n ) 2 b 1 + b 2 + b 3 + . . . . . b n . :\dfrac{a_1^{2}}{b_1}+\dfrac{a_2^{2}}{b_2}+\dfrac{a_3^{2}}{b_n}+....\dfrac{a_n^{2}}{b_n}\geq \dfrac{(a_1+a_2+a_3+......a_n)^{2}}{b_1+b_2+b_3+.....b_n}. In this case, \text{In this case,} a 1 2 1 + a 2 2 1 + . . . . a 2015 2 1 ( a 1 + a 2 + . . . . . . . a 2015 ) 2 2015 ( 2015 t i m e s 1 ) . \dfrac{a_1^{2}}{1}+\dfrac{a_2^{2}}{1}+....\dfrac{a_{2015}^{2}}{1}\geq \dfrac{(a_1+a_2+.......a_{2015})^{2}}{2015(2015\ times\ 1)}. But it is given that \text{But it is given that} a 1 + a 2 + . . . . . . . a 2015 = 1 a_1+a_2+.......a_{2015}=1 substituting this value gives, \text{substituting this value gives,} a 1 2 1 + a 2 2 1 + . . . . a 2015 2 1 1 2015 . \dfrac{a_1^{2}}{1}+\dfrac{a_2^{2}}{1}+....\dfrac{a_{2015}^{2}}{1}\geq \dfrac{1}{2015}. Thus,the minimum value of the given expression is, \text{Thus,the minimum value of the given expression is,} 1 2015 . \dfrac{1}{2015}. Now, \text{Now,} 120900 2015 = 60 \ \dfrac{120900}{2015}=60\ and \text{and} 60450 2015 = 30. \ \dfrac{60450}{2015}=30.\ Thus,the required answer \text{Thus,the required answer} = sin 60 cos 30 = 0. =\sin{60}-\cos{30}=0.

Very well written.

Krishna Ar - 6 years, 6 months ago

Log in to reply

Thanx!I have fallen in love with LaTeX.

Adarsh Kumar - 6 years, 6 months ago
Parth Dhar
Dec 15, 2014

Applying Cauchy-Schwarz Inequality:

( a k 2 ) ( 1 2 ) ( a k 1 ) 2 \quad (\sum{a_k^2})(\sum{1^2})\geq (\sum{a_k * 1})^2

( a k 2 ) ( 2015 ) ( 1 ) \Rightarrow (\sum{a_k^2})(2015)\geq (1)

( a k 2 ) ( 1 2015 ) \Rightarrow (\sum{a_k^2})\geq (\frac { 1 }{ 2015 })

T h e r e f o r e , Therefore,

E m i n = 2015 \quad E_{min} = 2015 \\

sin 120900 2015 cos 60450 2015 = sin 60 cos 30 = 0 \sin { \frac { 120900 }{ 2015 } } -\cos { \frac { 60450 }{ 2015 } } = \quad \sin { 60 } -\cos { 30\quad = } \quad \boxed { 0 }

Anna Anant
Dec 15, 2014

If a(k)>0, then the average value of a(k) for any k∈[1,2015] is 1/2015. Thus E=2015*1/(2015²)=1/2015 and hence x=1/2015. sin(120900/2015)-cos(60450/2015)= sin(60)-cos(30)=√3/2-√3/2=0 QED.

Rasched Haidari
Dec 12, 2014

It is possible to solve this by using the Cauchy Schwarz Inequality and making up another sequence which comprises of only 1.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...