Algebraic Sum Of Roots

Algebra Level 2

If α \alpha , β \beta , and γ \gamma are the roots of x 3 x 1 = 0 x^3-x-1=0 , compute:

1 α 1 + α + 1 β 1 + β + 1 γ 1 + γ \frac{1-\alpha}{1+\alpha}+\frac{1-\beta}{1+\beta}+\frac{1-\gamma}{1+\gamma}


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Anish Puthuraya
Mar 31, 2014

Let the required expression be S S . Therefore S = 1 α 1 + α + 1 β 1 + β + 1 γ 1 + γ S = \frac{1-\alpha}{1+\alpha}+\frac{1-\beta}{1+\beta}+\frac{1-\gamma}{1+\gamma}

S + 3 = ( 1 α 1 + α + 1 ) + ( 1 β 1 + β + 1 ) + ( 1 γ 1 + γ + 1 ) S+3 = \left(\frac{1-\alpha}{1+\alpha}+1\right)+\left(\frac{1-\beta}{1+\beta}+1\right)+\left(\frac{1-\gamma}{1+\gamma}+1\right)

S + 3 = 2 1 + α + 2 1 + β + 2 1 + γ S+3 = \frac{2}{1+\alpha}+\frac{2}{1+\beta}+\frac{2}{1+\gamma}

S + 3 2 = 3 + 2 ( α + β + γ ) + ( α β + β γ + γ α ) 1 + ( α β + β γ + γ α ) + ( α β γ ) \frac{S+3}{2} = \frac{3+2(\alpha+\beta+\gamma)+(\alpha\beta+\beta\gamma+\gamma\alpha)}{1+(\alpha\beta+\beta\gamma+\gamma\alpha)+(\alpha\beta\gamma)}

S + 3 2 = 3 + 2 ( 0 ) + ( 1 ) 1 + ( 1 ) + 1 \frac{S+3}{2} = \frac{3+2(0)+(-1)}{1+(-1)+1}

S + 3 2 = 2 \frac{S+3}{2} = 2

S = 1 \boxed{S = 1}

Can be done in a much simpler and elegant way !! a,b,c be the roots of the given polynomial, then we have to find S = \frac{1-a}{1+a} + \frac{1-b}{1+b} +\frac{1-c){1+c} , let p {1} = \frac{1-a}{1+a} ,p {2} =\frac{1-b}{1+b} ,p {3} =\frac{1-c}{1+c} . now p {1}= \frac{1-a}{1+a} then a = \frac{1-p {1}}{1+p {1}} now 'a' is a root of the given polynomial therefore , a^{3} -a-1 = 0 -------equation (1) ,therefore , substituting a = \frac{1-p {1}}{1+p {1}} we get p1^{3}-p1^{2}+7p1 +1 = 0 therefore p1, satisfies the equation p^{3}-p^{2}+7p +1= 0....equation (2) , by similar argument, even p {2} and p {3} satisfy equation(2), hence p {1},p {2},p {3} are roots of the equation(2) , now S = p {1} + p {2} + p {3} = 1

Vihari Vemuri - 7 years, 2 months ago

Log in to reply

Really a nice approach. Thanks.

Niranjan Khanderia - 6 years ago

An easy and less complicated way for solving the problem........ thanks for this solution...!!!!!!!!

Aman Bansal - 7 years, 2 months ago

Nice solution. Exactly the same way i did it.

Vijay Raghavan - 7 years, 2 months ago

little longer it is!!!

Vivek Yadav - 7 years, 2 months ago

How did the roots α + β + γ become 0?

JP Ferrer - 7 years, 2 months ago

Log in to reply

sum of the roots (coeff of x2) is 0

Srinivas Nani - 7 years, 2 months ago

becoz there is no value of coefficient of x2

Abhishek sinha - 7 years, 1 month ago

the formula is = -b/a its mean 0/1 = undefined (0)

Muhamad Ridwan - 5 years, 3 months ago

The denominator should also contain (alpha + beta + gamma)????

Rani Sen - 10 months, 1 week ago

The problem can be solved by figuring out the equation whose roots would be (1-a)/(1+a). By simple substitution we can find out that these would be the roots of the equation if x is replaced by (1-x)/(1+x). After we get the equation the solution of the problem is nothing but the -(coeff. of x^2)/(coeff. of x^3) in the new equation

John Doe - 7 years, 2 months ago
Parth Thakkar
Apr 1, 2014

We're given: x ( x 1 ) = 1 x + 1 x(x-1) = \dfrac{1}{x+1} .

So, we have: 1 α 1 + α = α ( α 1 ) ( 1 α ) = α 3 + 2 α 2 α \dfrac{ 1-\alpha}{1+\alpha} = \alpha(\alpha-1)(1-\alpha) = -\alpha^3 + 2\alpha^2 - \alpha .

Then, adding the β \beta and γ \gamma terms, we have:

S = ( α 3 + β 3 + γ 3 ) + 2 ( α 2 + β 2 + γ 2 ) ( α + β + γ ) S = -(\alpha^3 + \beta^3 + \gamma^3) + 2(\alpha^2 + \beta^2 + \gamma^2) - (\alpha + \beta + \gamma)

S = ( 3 α β γ ) + 2 ( ( α + β + γ ) 2 2 α β 2 β γ 2 γ α ) ( 0 ) \implies S = -(3 \alpha \beta \gamma) + 2((\alpha + \beta + \gamma)^2 - 2\alpha\beta -2\beta\gamma - 2\gamma\alpha) - (0)

S = ( 3 ( 1 ) ) + 2 ( 2 ) ( 0 ) = 1 \implies S = -(3 (1)) + 2(2) - (0) = \boxed{\boxed{1}}

Nice solution

Milun Moghe - 7 years, 2 months ago

Log in to reply

Thanks! :)

Parth Thakkar - 7 years, 2 months ago

Cool. I learnt a new method today. Thanks.

Niranjan Khanderia - 6 years ago

how did you work out that a 3 + b 3 + c 3 = 3 a b c a^3+b^3+c^3=3abc

John Frank - 4 years, 5 months ago

Log in to reply

(I mean alpha beta and gamma, but I dunno how to type that in latex)

John Frank - 4 years, 5 months ago

reply parth

Riya Verma - 1 year, 9 months ago

You can use Newton’s sums to find out α 3 + β 3 + γ 3 as well as α 2 + β 2 + γ 2 Being: S 3 = α 3 + β 3 + γ 3 S 2 = α 2 + β 2 + γ 2 S 1 = α + β + γ S 0 = 3 S 1 = 1 α + 1 β + 1 γ Also, expanding the polynomial: x 3 + 0 x 2 x 1 = 0 , you have: 1. S 3 + 0. S 2 1. S 1 1. S 0 = 0 S 3 S 1 S 0 = 0 α + β + γ = b a = 0 S 3 = S 0 S 3 = 3 To find out S 2 : 1. S 2 + 0. S 1 1. S 0 1. S 1 = 0 S 2 S 0 S 1 = 0 S 2 = 3 + S 1 ( I ) S 1 = 1 α + 1 β + 1 γ S 1 = β . γ + α . γ + α . β α . β . γ β . γ + α . γ + α . β = c a = 1 α . β . γ = d a = 1 S 1 = 1 1 = 1 Back to ( I ) : S 2 = 3 1 S 2 = 2 From Parth’s solution: S = ( α 3 + β 3 + γ 3 ) + 2 ( α 2 + β 2 + γ 2 ) α + β + γ S = S 3 + 2 S 2 S 0 S = 3 + 2.2 0 S = 1 \\\text{You can use Newton's sums to find out}\ \alpha^{3}+\beta^{3}+\gamma^{3}\ \text{as well as}\\ \alpha^{2}+\beta^{2}+\gamma^{2}\\ \text{Being:}\ \\S_{3}=\alpha^{3}+\beta^{3}+\gamma^{3}\\ S_{2}=\alpha^{2}+\beta^{2}+\gamma^{2}\\ S_{1}=\alpha+\beta+\gamma\\S_{0}=3\\ S_{-1}=\dfrac{1}{\alpha}+\dfrac{1}{\beta}+\dfrac{1}{\gamma} \\\text{Also, expanding the polynomial:}\ x^{3}+0x^{2}-x-1=0, \text{ you have:}\ \\1.S_{3}+0.S_{2}-1.S_{1}-1.S_{0}=0 \\S_{3}-S_{1}-S_{0}=0\\ \alpha+\beta+\gamma=\dfrac{-b}{a}=0\\S_{3}=S_{0}\\S_{3}=3\\ \text{To find out}\ S_{2}:\\ 1.S_{2}+0.S_{1}-1.S_{0}-1.S_{-1}=0 \\ S_{2}-S_{0}-S_{-1}=0\\S_{2}=3+S_{-1} \left ( I \right )\\S_{-1}=\dfrac{1}{\alpha}+\dfrac{1}{\beta}+\dfrac{1}{\gamma}\\S_{-1}=\dfrac{\beta.\gamma+\alpha.\gamma+\alpha.\beta}{\alpha.\beta.\gamma}\\\beta.\gamma+\alpha.\gamma+\alpha.\beta=\dfrac{c}{a}=-1\\\alpha.\beta.\gamma=\dfrac{-d}{a}=1\\S_{-1}=\dfrac{-1}{1}=-1\\\text{Back to}\ (I):\\S_{2}=3-1\\S_{2}=2\\\text{From Parth's solution:}\\ S=-(\alpha^{3}+\beta^{3}+\gamma^{3})+2(\alpha^{2}+\beta^{2}+\gamma^{2})-\alpha+\beta+\gamma\\S=-S_{3}+2S_{2}-S_{0}\\S=-3+2.2-0\\S=1

Lia Juns - 1 year, 7 months ago

Can you please elaborate on the second line? I feel lost.

Michael Wang - 2 years, 2 months ago
Aman Bansal
Apr 1, 2014

A = 1 α 1 + α + 1 β 1 + β + 1 γ 1 + γ A = \frac{1-\alpha}{1+\alpha} + \frac{1-\beta}{1+\beta} + \frac{1-\gamma}{1+\gamma}

A = ( 1 α ) ( 1 + β ) ( 1 + γ ) + ( 1 β ) ( 1 + α ) ( 1 + γ ) + ( 1 γ ) ( 1 + α ) ( 1 + β ) ( 1 + α ) ( 1 + β ) ( 1 + γ ) A = \frac{(1-\alpha)(1+\beta)(1+\gamma) + (1-\beta)(1+\alpha)(1+\gamma) + (1-\gamma)(1+\alpha)(1+\beta)}{(1+\alpha)(1+\beta)(1+\gamma)}

On solving this, we get:

A = 3 + ( α + β + γ ) ( α β + β γ + γ α ) 3 ( α β γ ) 1 + ( α + β + γ ) + ( α β + β γ + γ α ) + ( α β γ ) A = \frac{3 + (\alpha + \beta + \gamma) - (\alpha \beta + \beta\gamma + \gamma\alpha) - 3(\alpha\beta\gamma)}{1 + (\alpha + \beta + \gamma) + (\alpha\beta + \beta\gamma + \gamma\alpha) + (\alpha\beta\gamma)}

which equals:

A = 3 + 0 ( 1 ) 3 ( 1 ) 1 + 0 + ( 1 ) + 1 A = \frac{3 + 0 -(-1) - 3(1)}{1 + 0 + (-1) + 1}

A = 1 \boxed{A = 1}

Vishal Sharma
Apr 1, 2014

In the given equation substitute (1-t)/(1+t) for 'x' and obtain a new cubic equation in terms of 't' . Then the required expression is simply the sum of the roots of the new cubic....

Parth Tandon
Oct 15, 2014

apply componendo and dividendo and the eq. simplifies to-

= -(1/a+1/b+1/c)

abc=1 $ ab+bc+ca=-1

divide the 2 eq. and you get (1/a+1/b+1/c)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...