Algebra

Algebra Level 3

Which of the following is a possible value of x y \dfrac xy if x x and y y satisfy x + y 4 x y = 1 \dfrac{x+y}{4\sqrt{xy} } = 1 ?

7 + 4 6 7 + 4\sqrt6 7 + 4 3 7 + 4\sqrt3 5 + 4 3 5 + 4\sqrt3 7 + 4 7 7 + 4\sqrt7

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 14, 2016

x + y 4 x y = 1 x y + 1 4 x y = 1 x y + 1 = 4 x y ( x y ) 2 4 x y + 1 = 0 x y = 4 ± 16 4 2 = 2 ± 3 x y = ( 2 ± 3 ) 2 = 7 ± 4 3 \begin{aligned} \frac {x+y}{4\sqrt{xy}} & = 1 \\ \frac {\frac xy + 1}{4 \sqrt{\frac xy}} & = 1 \\ \frac xy + 1 & = 4 \sqrt{\frac xy} \\ \left( \sqrt{\frac xy} \right)^2 - 4 \sqrt{\frac xy} + 1 & = 0 \\ \implies \sqrt{\frac xy} & = \frac {4 \pm \sqrt{16-4}}2 \\ & = 2 \pm \sqrt 3 \\ \implies \frac xy & = \left( 2 \pm \sqrt 3 \right)^2 \\ & = 7 \pm 4\sqrt 3 \end{aligned}

Therefore, the answer is 7 + 4 3 \boxed{7+4\sqrt 3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...