Algebra

Algebra Level 3

{ a + b + c = 56 a 2 + b 2 + c 2 = 1344 a 2 = b c \begin{cases} a+ b + c = 56 \\ a^2 + b^2 + c^2 = 1344 \\ a^2 = bc \end{cases}

Let a a , b b and c c be numbers satisfying the system of equations above.

Find a b c abc .


The answer is 4096.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

From the first equation we have that

( b + c ) 2 = ( 56 a ) 2 b 2 + c 2 + 2 b c = 3136 112 a + a 2 (b + c)^{2} = (56 - a)^{2} \Longrightarrow b^{2} + c^{2} + 2bc = 3136 - 112a + a^{2} .

Substituting b 2 + c 2 = 1344 a 2 b^{2} + c^{2} = 1344 - a^{2} and a 2 = b c a^{2} = bc from the 2nd and 3rd equations yields

1344 a 2 + 2 a 2 = 3136 112 a + a 2 112 a = 3136 1344 = 1792 1344 - a^{2} + 2a^{2} = 3136 - 112a + a^{2} \Longrightarrow 112a = 3136 - 1344 = 1792 \Longrightarrow

a = 16 a b c = a × a 2 = 1 6 3 = 4096 a = 16 \Longrightarrow abc = a \times a^{2} = 16^{3} = \boxed{4096} .


Note: With a = 16 a = 16 , we have that b + c = 40 , b 2 + c 2 = 1088 b + c = 40, b^{2} + c^{2} = 1088 and b c = 256 bc = 256 .

So ( b c ) 2 = b 2 + c 2 2 b c = 1088 512 = 576 b c = ± 24 (b - c)^{2} = b^{2} + c^{2} - 2bc = 1088 - 512 = 576 \Longrightarrow b - c = \pm 24 .

If b c = 24 b - c = 24 then 2 b = ( b + c ) + ( b c ) = 40 + 24 = 64 b = 32 , c = 8 2b = (b + c) + (b - c) = 40 + 24 = 64 \Longrightarrow b = 32, c = 8 .

If b c = 24 b - c = -24 then 2 b = ( b + c ) + ( b c ) = 40 24 = 16 b = 8 , c = 32 2b = (b + c) + (b - c) = 40 - 24 = 16 \Longrightarrow b = 8, c = 32 .

a + b + c = 56 a+b+c=56

=> ( a + b + c ) 2 (a+b+c)^{2} = a 2 a^{2} + b 2 b^{2} + c 2 c^{2} + 2 a b 2ab + 2 b c 2bc + 2 c a 2ca

=> ( 56 ) 2 (56)^{2} = a 2 a^{2} + b 2 b^{2} + c 2 c^{2} + 2 a b 2ab + 2 b c 2bc + 2 c a 2ca ................. ( 1 ) (1)

also, a 2 a^{2} + b 2 b^{2} + c 2 c^{2} = 1344 ................... ( 2 ) (2)

putting value of ( 2 ) (2) in ( 1 ) (1) we get,

=> 3136 3136 = 1344 1344 + 2 ( a b + b c + c a ) 2(ab+bc+ca)

=> 1792 1792 = 2 ( a b + b c + c a ) 2(ab+bc+ca)

=> 896 896 = ( a b + b c + c a ) (ab+bc+ca)

since, a 2 a^{2} = b c bc

=> 896 896 = a b + a 2 + c a ab+a^{2}+ca

=> 896 896 = a ( a + b + c ) a(a+b+c)

=> ( 896 56 \frac{896}{56} ) = a a ............................................. since, a + b + c = 56 a+b+c = 56

=> a a = 16 16

=> a b c abc = a . a 2 a.a^{2} .......................................... since, a 2 = b c a^{2} = bc

=> a b c abc = a 3 a^{3} = 1 6 3 16^{3} = 4096 4096

We know that , (a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(ab+bc+ca) 》56^{2}=1344+2× (ab+a^{2}+ca) 》3136-1344=2a (a+b+c) 》1792=2a×56 》112a=1792 》a=16 then, abc =a×a^{2} =a^{3 } =16^{3} =4096

Chew-Seong Cheong
Jan 29, 2017

Consider

( a + b + c ) 2 = a 2 + b 2 + c 2 + 2 ( a b + b c + c a ) 5 6 2 = 1344 + 2 ( a b + b c + c a ) a b + b c + c a = 5 6 2 1344 2 = 896 \begin{aligned} (a+b+c)^2 & = a^2+b^2+c^2 + 2(ab+bc+ca) \\ 56^2 & = 1344 + 2(ab+bc+ca) \\ ab + bc + ca & = \frac {56^2-1344}2 = 896 \end{aligned}

From a 2 = b c a^2 = bc , we note that b b , a a and c c are in a geometric progression . Let b = a r b = \dfrac ar and c = a r c=ar , where r r is the common ratio of the geometric progression. Then we have:

{ a + b + c = 56 a + a r + a r = 56 1 + 1 r + r = 56 a . . . ( 1 ) a b + b c + c a = 896 a 2 r + a 2 + a 2 r = 896 1 + 1 r + r = 896 a 2 . . . ( 2 ) \begin{cases} a + b + c = 56 & \implies a + \dfrac ar + ar = 56 & \implies 1 + \dfrac 1r + r = \dfrac {56}a & ...(1) \\ ab + bc + ca = 896 & \implies \dfrac {a^2}r + a^2 + a^2r = 896 & \implies 1 + \dfrac 1r + r = \dfrac {896}{a^2} & ...(2) \end{cases}

From ( 1 ) = ( 2 ) : 56 a = 896 a 2 a = 896 56 = 16 (1)=(2): \ \dfrac {56}a = \dfrac {896}{a^2} \implies a = \dfrac {896}{56} = 16 . Now, a b c = a 3 = 1 6 3 = 4096 abc = a^3 = 16^3 = \boxed{4096} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...