Algebra and Geometry Don't Fit Well!

Geometry Level 5

2 x 3 = y 2 = 2 z 2 3 \large \dfrac {2x}{\sqrt 3} = y \sqrt 2 = \dfrac {2z}{\sqrt {2-\sqrt 3}}

Consider a triangle with side lengths x x , y y and z z satisfying the equation above. If the longest side has length 303, then the circumradius of this triangle can be expressed as a b a \sqrt b , where a a and b b are positive integers with b b square-free. Find a + b a+b .


The answer is 104.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 24, 2016

2 x 3 = y 2 = 2 z 2 3 x 3 2 = y 1 2 = z 1 2 2 3 Since x , y , z are side lengths, the equation is the sine rule. x sin 12 0 = y sin 4 5 = z sin 1 5 \begin{aligned} \frac {2x}{\sqrt 3} & = y \sqrt 2 = \frac {2z}{\sqrt{2-\sqrt{3}}} \\ \frac x{\frac {\sqrt 3}2} & = \frac y{\frac 1{\sqrt 2}} = \frac z {\frac 12 \sqrt{2-\sqrt{3}}} & \small \color{#3D99F6}{\text{Since }x, y, z \text{ are side lengths, the equation is the sine rule.}} \\ \frac x{\sin 120^\circ} & = \frac y{\sin 45^\circ} = \frac z{\sin 15^\circ} \end{aligned}

The largest angle is 12 0 120^\circ , therefore, the longest side is x = 303 x=303 .

The circumradius is given by R = x 2 sin 12 0 = 303 3 = 101 3 R = \dfrac x{2 \sin 120^\circ} = \dfrac {303}{\sqrt 3} = 101 \sqrt 3 .

a + b = 101 + 3 = 104 \implies a+b = 101 + 3 = \boxed{104}

Nice solution. Up voted.
But I have a problem. Can any one explain ? Thanks. It is as follows.
2 6 = . 816496 < 1 , x > y a n d y = . 816496 x . 2 3 = . 517638 < 1 , x > z a n d z = . 517638 x . x = 303. \dfrac 2 {\sqrt6}=.816496<1, \ \ \ \therefore\ \ x>y\ and\ y=.816496x.\\ \sqrt{2- \sqrt3}=.517638<1,\ \ \ \therefore\ \ x>z\ and\ z=.517638x.\\ \therefore\ x=303.\\ R = x 3 y z x 2 ( 1 + y + z ) ( 1 + y + z ) ( 1 y + z ) ( 1 + y z ) R=\dfrac{x^3*y*z}{x^2\sqrt{(1+y+z)*(-1+y+z)*(1-y+z)*(1+y-z)} }\\ = 303 . 816496 . 517638 ( 1 + . 816496 + . 517638 ) ( 1 + . 816496 + . 517638 ) ( 1 . 816496 + . 517638 ) ( 1 + . 816496 . 517638 ) = \dfrac{303*.816496*.517638}{\sqrt{(1+.816496+.517638)*(-1+.816496+.517638)*(1-.816496+.517638)*(1+.816496-.517638)} } \\ = 23090.40135 , , , , , , , , S i n c e R = a b , with a,b as integers and b square free, R 2 = a 2 b must  be  an  integer. =\sqrt{23090.40135,,,,,,,,}\\ Since \ R=a\sqrt b\ ,\text{ with a,b as integers and b square free,}\\ R^2=a^2*b\ \text{must\ be\ an\ integer.}\\ H o w e v e r w i t h a 50 d i g i t c a l c u l a t o r , R 2 = 23090.40135 , , , , , , , , So the answer can not be in the form a b b o t h i n t e g e r s . However\ with\ a\ \ 50\ \ digit\ calculator, \ R^2=23090.40135,,,,,,,,\\ \text{So the answer can not be in the form } \ a\sqrt b\ both\ integers.

Niranjan Khanderia - 4 years, 10 months ago

Log in to reply

R 2 = x 6 y 2 z 2 x 4 ( 1 + y + z ) ( 1 + y + z ) ( 1 y + z ) ( 1 + y z ) R^2 = \dfrac {x^6y^2z^2}{x^4(1+y+z)(-1+y+z)(1-y+z)(1+y-z)} . We note that y 2 z 2 = 4 6 ( 2 3 ) y^2z^2 = \dfrac 46 (2-\sqrt{3}) is not rational. ( 1 + y + z ) ( 1 + y + z ) ( 1 y + z ) ( 1 + y z ) = y 4 + z 4 2 y 2 z 2 + 2 y 2 + 2 z 2 (1+y+z)(-1+y+z)(1-y+z)(1+y-z) = y^4 + z^4 - 2y^2z^2 + 2y^2 + 2z^2 . Note that z 2 z^2 and z 4 z^4 are not rational. Therefore, for R = a b R=a\sqrt b , a a and b b are not rational.

Chew-Seong Cheong - 4 years, 10 months ago

Log in to reply

Thanks very much for the explaination.

Niranjan Khanderia - 4 years, 10 months ago

I understood till x=303 but how did you find the circumradius? Is there any formula?

Satwik Murarka - 4 years, 10 months ago

Log in to reply

Circumradius is given by: R = a 2 sin A R = \dfrac a{2\sin A} which was used above. Check out the wiki here .

Chew-Seong Cheong - 4 years, 10 months ago

Log in to reply

Thank you I now understood it.

Satwik Murarka - 4 years, 10 months ago
Aaghaz Mahajan
May 17, 2018

A simple use of SINE RULE!!!! And look out for the value of SIN(15).......!!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...