Algebra and roots of polynomial

Algebra Level 2

Find real number x x such that:

x 3 + x 2 + x + 1 x + 1 x 2 + 1 x 3 = 28 x^3+x^2+x+\frac{1}{x}+\frac{1}{x^2}+\frac{1}{x^3}=28

3 3 ± 5 2 \frac{3\pm\sqrt{5}}{2} -3 3 ± 5 2 \frac{-3\pm\sqrt{5}}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

ChengYiin Ong
Jul 25, 2019

By letting y = x + 1 x y=x+\frac{1}{x} ,

x 2 + 1 x 2 = y 2 2 x^2+\frac{1}{x^2}=y^2-2

x 3 + 1 x 3 = y 3 3 y x^3+\frac{1}{x^3}=y^3-3y

x 3 + x 2 + x + 1 x + 1 x 2 + 1 x 3 = 28 x^3+x^2+x+\frac{1}{x}+\frac{1}{x^2}+\frac{1}{x^3}=28

y + y 2 2 + y 3 3 y = 28 \Rightarrow y+y^2-2+y^3-3y=28

y 3 + y 2 2 y 30 = 0 \Rightarrow y^3+y^2-2y-30=0

Applying the Rational Root Theorem, we know that y = 3 y=3 is a root of the polynomial,

( y 3 ) ( y 2 + 4 y + 10 ) = 0 (y-3)(y^2+4y+10)=0\Rightarrow only y = 3 y=3 satisfies the condition that x x is a real number

x + 1 x = 3 x 2 3 x + 1 = 0 x = 3 ± 5 2 x+\frac{1}{x}=3\Rightarrow x^2-3x+1=0\Rightarrow x=\frac{3\pm\sqrt{5}}{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...