Derivatives and Limits

Calculus Level 3

If f ( x ) = x 2 e x sin x f(x)=x^2 e^{-x} \sin x , what is lim x 0 f ( x ) x 2 \displaystyle \lim_{x \to 0} \frac{f'(x)}{x^2} ?


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ricky Escobar
Dec 16, 2013

We will approach this problem by representing f ( x ) f(x) as a power series. Using the power series formulas for the exponential and sine functions, we get f ( x ) = x 2 ( 1 x + x 2 2 x 3 6 + ) ( x x 3 6 + ) . f(x)=x^2(1-x+\frac{x^2}{2}-\frac{x^3}{6}+\cdots)(x-\frac{x^3}{6}+\cdots). By carefully multiplying the two series, we get f ( x ) = x 2 ( x x 2 x 3 6 + x 3 2 + ) = x 3 x 4 + x 5 6 + . f(x)=x^2(x-x^2-\frac{x^3}{6}+\frac{x^3}{2}+\cdots)=x^3-x^4+\frac{x^5}{6}+\cdots. So, f ( x ) = 3 x 2 4 x 3 + 5 x 4 6 + , f'(x)=3x^2-4x^3+\frac{5x^4}{6}+\cdots, and lim x 0 f ( x ) x 2 = lim x 0 3 x 2 4 x 3 + 5 x 4 6 + x 2 \lim_{x \to 0} {\frac{f'(x)}{x^2}} = \lim_{x \to 0} {\frac{3x^2-4x^3+\frac{5x^4}{6}+\cdots}{x^2}} = lim x 0 ( 3 4 x + 5 x 2 6 + ) = 3 . =\lim_{x \to 0} \left(3-4x+\frac{5x^2}{6}+\cdots\right) = \fbox{3}.

Azizul Islam
Jan 5, 2014

f(x)=(x^2 sin⁡ x)/e^x

fʹ(x)=(e^x (x^2 cos ⁡x +2x sin x) - x^2 sin⁡ x e^x ) / e^2x

lim (x --> 0) (fʹ(x)/x^2)

= lim (x --> 0) (e^x x^2 cos ⁡x + e^x 2x sin x - x^2 sin⁡ x e^x ) / x^2 e^2x

= lim (x --> 0) (e^x x^2 cos ⁡x / x^2 e^2x ) + lim (x --> 0) ( e^x 2x sin x /x^2 e^2x ) - lim (x --> 0) ( x^2 sin⁡ x e^x /x^2 e^2x )

= lim (x --> 0) (cos⁡ x / e^x ) + lim (x --> 0) ( 2 sin x / x e^x ) - lim (x --> 0) ( sin⁡ x / e^x )

= 1 + 2 – 0

= 3

Info Web
Oct 20, 2020

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...