Algebra Basics

Algebra Level 2

( b + a ) ( 2 b a ) ( a b ) 2 ( b a ) ( b 2 a 2 ) ( 2 b a ) 1 \large\frac{(b+a)(2b-a)(a-b)^2}{(b-a)(b^2-a^2)(2b-a)} - 1

Evaluate the expression above, where a b |a| \neq |b| and 2 b a 2b \neq a .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

( b + a ) ( 2 b a ) ( a b ) 2 ( b a ) ( b 2 a 2 ) ( 2 b a ) 1 = ( b + a ) ( 2 b a ) ( a b ) 2 ( b a ) ( b a ) ( b + a ) ( 2 b a ) 1 = ( b + a ) ( a b ) 2 ( b a ) 2 ( b + a ) 1 = ( b + a ) ( a b ) 2 ( b a ) 2 ( b + a ) 1 = 1 1 = 0 \begin{aligned} \frac {(b+a)(2b-a)(a-b)^2}{(b-a){\color{#3D99F6}(b^2-a^2)}(2b-a)} - 1 & = \frac {(b+a)\cancel{(2b-a)}(a-b)^2}{(b-a){\color{#3D99F6}(b-a)(b+a)}\cancel{(2b-a)}} - 1 \\ & = \frac {\color{#3D99F6}(b+a) \color{#D61F06}(a-b)^2}{\color{#D61F06}(b-a)^2\color{#3D99F6}(b+a)} - 1 \\ & = \frac {\color{#3D99F6}\cancel{(b+a)} \color{#D61F06} \cancel{(a-b)^2}}{\color{#D61F06}\cancel{(b-a)^2} \color{#3D99F6}\cancel{(b+a)}} - 1 \\ & = 1 - 1 \\ & = \boxed 0 \end{aligned}

Mohammad Farhat
Jun 2, 2019

( b + a ) ( 2 b a ) ( a b ) 2 ( b a ) ( b 2 a 2 ) ( 2 b a ) 1 \frac{(b+a)(2b-a)(a-b)^2}{(b-a)(b^2-a^2)(2b-a)} - 1 Cancel the ( 2 b a ) (2b-a) and you get ( b + a ) ( a b ) 2 ( b a ) ( b 2 a 2 ) 1 \frac{(b+a)(a-b)^2}{(b-a)(b^2-a^2)} - 1 Expand the squared terms ( b + a ) ( a b ) ( a b ) ( b a ) ( b a ) ( b + a ) 1 \frac{(b+a)(a-b)(a-b)}{(b-a)(b-a)(b+a)} - 1 Cancel the ( b + a ) (b+a) and you get ( a b ) ( a b ) ( b a ) ( b a ) 1 \frac{(a-b)(a-b)}{(b-a)(b-a)} - 1 Change the ( b a ) (b-a) to ( a b ) -(a-b) ( a b ) ( a b ) ( a b ) ( b a ) 1 \frac{(a-b)(a-b)}{-(a-b)(b-a)} - 1 Cancel ( a b ) (a-b) ( a b ) ( b a ) 1 \frac{(a-b)}{-(b-a)} - 1 Multiply the 1 -1 and Simplify ( a b ) ( a b ) 1 \frac{(a-b)}{(a-b)} - 1 1 1 1 - 1 1 1 = 0 1 - 1= 0

That "subtract 1" is quite suspicious:p

X X - 2 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...