Is it a telescopic series?

Calculus Level 5

lim n r = 0 n ( 1 3 r + 1 1 3 r + 2 ) = ? \lim_{n \rightarrow \infty} \sum _{r=0}^{n}{\left(\frac {1}{3r+1}-\frac{1}{3r+2} \right) } = \ ?


The answer is 0.604.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Ronak Agarwal
Oct 17, 2014

Question is easy if you know the concept of interchanging summations and integrals.First we write the required sum as :

S = r = 0 1 ( 3 r + 1 ) ( 3 r + 2 ) S=\displaystyle \sum _{ r=0 }^{ \infty }{ \frac { 1 }{ (3r+1)(3r+2) } }

We know that :

0 x y 3 r d y = x 3 r + 1 3 r + 1 \large \int _{ 0 }^{ x }{ { y }^{ 3r }dy } =\frac { { x }^{ 3r+1 } }{ 3r+1 }

Integrating it again with respect to x x and putting limits 0 0 to 1 1 we get :

0 1 0 x y 3 r d y d x = 0 1 x 3 r + 1 3 r + 1 d x = 1 ( 3 r + 1 ) ( 3 r + 2 ) \large \int _{ 0 }^{ 1 }{ \int _{ 0 }^{ x }{ { y }^{ 3r }dy } dx } =\int _{ 0 }^{ 1 }{ \frac { { x }^{ 3r+1 } }{ 3r+1 } dx } =\frac { 1 }{ (3r+1)(3r+2) }

So in the expression of S we replace our general term with our integration expression to get :

S = r = 0 0 1 0 x y 3 r d y d x \large S=\displaystyle \sum _{ r=0 }^{ \infty }{ \int _{ 0 }^{ 1 }{ \int _{ 0 }^{ x }{ { y }^{ 3r }dy } dx } }

Here comes the main trick what we do now is interchange integral and the summation to get :

S = 0 1 0 x r = 1 y 3 r d y d x \large S=\int _{ 0 }^{ 1 }{ \int _{ 0 }^{ x }{\displaystyle \sum _{ r=1 }^{ \infty }{ { y }^{ 3r } } dy } dx }

After interchanging we see that our summation has now become an infinite G.P. hence applying the formula for infinte G.P we get :

S = 0 1 0 x 1 1 y 3 d y d x \large S=\int _{ 0 }^{ 1 }{ \int _{ 0 }^{ x }{ \frac { 1 }{ 1-{ y }^{ 3 } } dy } dx }

Now the thing left is a not so simple double integral which can be evaluated with good amount of hard work and it comes out to be :

S = π 3 3 \large \boxed{S=\frac { \pi }{ 3\sqrt { 3 } }}

Or, this summation is equivalent to 0 1 r = 0 x 3 r x 3 r + 1 d x = 0 1 1 x 1 x 3 d x = 1 1 + x 2 + x d x = π 3 3 \int_{0}^{1} \sum_{r=0}^{\infty} x^{3r}-x^{3r+1} dx = \int_{0}^{1} \frac{1-x}{1-x^3}dx = \frac{1}{1+x^2+x} dx = \frac{\pi}{3\sqrt{3}}

Shivang Jindal - 6 years, 7 months ago

Log in to reply

Oh! Yes Sorry, I missed this thing, I should notice this too.

Ronak Agarwal - 6 years, 7 months ago

nice approach

Abhisek Rath - 6 years, 7 months ago

Wonderful!

Sandeep Bhardwaj - 5 years, 3 months ago

Did the same! :)

Prakhar Bindal - 5 years ago

that is the best approach!!

Parth Lohomi - 6 years, 4 months ago

To make the double integral easier we can us a neat property of double integrals of reversing the order of integration. That is , S = 0 1 0 x 1 1 y 3 d y d x = 0 1 y 1 1 1 y 3 d x d y \displaystyle S = \int \limits_0^1 \int \limits_0^x \frac{1}{1-y^3} \text{ d}y \text{ d}x = \int \limits_0^1 \int \limits_y^1 \frac{1}{1-y^3} \text{ d}x \text{ d}y .

So first simply integrate out x x since it is independent of y y to obtain a familiar integral of the form 1 quadratic \frac{1} {\text{ quadratic }} .

By the way, nice solution Ronak. +1 for it.

Sudeep Salgia - 6 years, 7 months ago

Log in to reply

Nice observation Sudeep! ¨ \ddot\smile

Karthik Kannan - 6 years, 7 months ago

It would be good to argue why the interchange is valid.

Abhishek Sinha - 4 years, 5 months ago

can we use riemann sum...

anubhav agarwal - 5 years, 9 months ago

Can you please give a hint on how to integrate (dx/1+x^(3)) ?

Mvs Saketh - 6 years, 7 months ago

Log in to reply

got it partial fractions

Mvs Saketh - 6 years, 7 months ago
Chew-Seong Cheong
May 31, 2016

L = r = 0 ( 1 3 r + 1 1 3 r + 2 ) = 1 1 2 + 1 4 1 5 + 1 7 1 8 + . . . \begin{aligned} L & = \sum_{r=0}^\infty \left(\frac 1{3r+1} - \frac 1{3r+2} \right) \\ & = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{5} + \frac{1}{7} - \frac{1}{8} + ... \end{aligned}

Now consider the Maclaurin series of ln ( 1 z ) -\ln (1-z) , where z z is a complex number:

ln ( 1 z ) = z + z 2 2 + z 3 3 + z 4 4 + z 5 5 + z 6 6 + . . . Let z = e 2 π 3 i ln ( 1 e 2 π 3 i ) = e 2 π 3 i + e 4 π 3 i 2 + e 2 π i 3 + e 8 π 3 i 4 + e 10 π 3 i 5 + e 4 π i 6 + . . . Taking the imaginary part both sides [ ln ( 1 e 2 π 3 i ) ] = sin 2 π 3 + sin 4 π 3 2 + sin 2 π 3 + sin 8 π 3 4 + sin 10 π 3 5 + sin 4 π 6 + . . . Note that 1 < sin 2 k π 3 < 1 [ ln ( 1 + 1 2 3 2 i ) ] = 3 2 3 2 1 2 + 0 3 + 3 2 1 4 3 2 1 5 + 0 6 + . . . [ ln ( 3 2 3 2 i ) ] = 3 2 ( 1 1 2 + 1 4 1 5 + 1 7 1 8 + . . . ) [ ln ( 3 ( 3 2 1 2 i ) ) ] = 3 2 L L = 2 3 [ ln ( 3 e π 6 i ) ] = 2 3 [ ln 3 + π 6 i ] = π 3 3 0.605 \begin{aligned} -\ln(1-z) & = z + \frac{z^2}{2} + \frac{z^3}{3} + \frac{z^4}{4} + \frac{z^5}{5} + \frac{z^6}{6} + ... \quad \quad \small \color{#3D99F6}{\text{Let }z = e^{\frac{2\pi}{3}i}} \\ -\ln(1-e^{\frac{2\pi}{3}i}) & = e^{\frac{2\pi}{3}i} + \frac{e^{\frac{4\pi}{3}i}}{2} + \frac{e^{2\pi i}}{3} + \frac{e^{\frac{8\pi}{3}i}}{4} + \frac{e^{\frac{10\pi}{3}i}}{5} + \frac{e^{4\pi i}}{6} + ... \quad \quad \small \color{#3D99F6}{\text{Taking the imaginary part both sides}} \\ \Im \left[-\ln(1-e^{\frac{2\pi}{3}i})\right] & = \sin \frac{2\pi}{3} + \frac{\sin \frac{4\pi}{3}}{2} + \frac{\sin 2\pi}{3} + \frac{\sin \frac{8\pi}{3}}{4} + \frac{\sin \frac{10\pi}{3}}{5} + \frac{\sin 4\pi}{6} + ... \quad \quad \small \color{#3D99F6}{\text{Note that } -1 < \sin \frac{2k\pi}{3} < 1} \\ \Im \left[-\ln \left(1+ \frac{1}{2} - \frac{\sqrt{3}}{2}i \right)\right] & = \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} \cdot \frac{1}{2} + \frac{0}{3} + \frac{\sqrt{3}}{2} \cdot \frac{1}{4} - \frac{\sqrt{3}}{2} \cdot \frac{1}{5} + \frac{0}{6} + ... \\ \Im \left[-\ln \left(\frac{3}{2} - \frac{\sqrt{3}}{2}i \right)\right] & = \frac{\sqrt{3}}{2}\left( 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{5} + \frac{1}{7} - \frac{1}{8} + ... \right) \\ \Im \left[-\ln \left(\sqrt{3}\left(\frac{\sqrt{3}}{2} - \frac{1}{2}i \right) \right)\right] & = \frac{\sqrt{3}}{2} \cdot L \\ \implies L & = \frac{2}{\sqrt{3}} \cdot \Im \left[-\ln \left(\sqrt{3} e^{-\frac{\pi}{6}i} \right)\right] \\ & = \frac{2}{\sqrt{3}} \cdot \Im \left[-\ln \sqrt{3} + \frac{\pi}{6}i \right] \\ & = \frac{\pi}{3\sqrt{3}} \approx \boxed{0.605} \end{aligned}

Farouk Yasser
Feb 15, 2015

Any one here used a python code? :D

Got 0.604598676967

I used calculator after 40-50 terms sum almost do not change hence the answer comes.

Shyambhu Mukherjee - 5 years, 7 months ago
Hana Wehbi
May 10, 2016

The easiest way is to mention few terms: 1 1 \frac{1}{1} - 1 2 \frac{1}{2} + 1 4 \frac{1}{4} - 1 5 \frac{1}{5} + 1 7 \frac{1}{7} - 1 8 \frac{1}{8} ...etc. We notice, we are summing over (0,1) the following integral \int 1 x 1 x 3 \frac{1-x}{1-x^3} = π 3 3 \frac{\pi}{3\sqrt{3}}

http://scipp.ucsc.edu/~haber/ph116A/powertheorems.pdf

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...