Algebra Craze 2

Algebra Level 3

Let m m and n n be real numbers where m > 2 m > \sqrt{2} and let x , y , x,y, and X X be real numbers satisfying the following system of equations: x + y = m X 1 x y = 1 2 ( ( m 2 1 ) X 2 m X 2 ) . \begin{aligned} x+y &=& mX - 1 \\ xy &=& \dfrac{1}{2}((m^2 - 1)X^2 - mX - 2). \end{aligned}

If the minimum value of x 2 + y 2 = 3 5 m 2 2 m + 1 x^2 + y^2 = 3 - \sqrt{\dfrac{5}{m^2 - 2}}m + 1 and the line x + y = m X 1 x + y = mX - 1 is tangent to the curve x y = 1 2 ( ( m 2 1 ) X 2 m X 2 ) xy = \dfrac{1}{2}((m^2 - 1)X^2 - mX - 2) at the point ( x 0 , y 0 ) (x_{0},y_{0}) , find 3 x 0 + 7 y 0 3x_{0} + 7y_{0} to eight decimal places.

Refer to previous problem


The answer is 8.22875656.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jun 18, 2018

Let m > 2 m > \sqrt{2} .

x + y = m X 1 x y = 1 2 ( ( m 2 1 ) X 2 m X 2 ) \begin{aligned} x+y &=& mX - 1 \\ xy &=& \dfrac{1}{2}((m^2 - 1)X^2 - mX - 2) \end{aligned}

\implies

( x + y ) 2 = m 2 X 2 2 m X + 1 2 x y = ( m 2 1 ) X 2 m X 2 \begin{aligned} (x+y)^2 &=& m^2X^2 - 2mX + 1\\ 2xy &=& (m^2 - 1)X^2 - mX - 2 \end{aligned}

( x + y ) 2 2 x y = x 2 + y 2 = X 2 m X + 3 \implies (x + y)^2 - 2xy = x^2 + y^2 = X^2 - mX + 3 .

x = ( m 2 1 ) X 2 m X 2 2 y 2 y 2 2 ( m X 1 ) y + ( ( m 2 1 ) 2 m X 2 ) = 0 x = \dfrac{(m^2 - 1)X^2 - mX - 2}{2y} \implies 2y^2 - 2(mX - 1)y + ((m^2 - 1)^2 - mX - 2) = 0 which has real value solutions whenever the discriminant D = 20 ( 4 m 2 8 ) X 2 0 X 2 5 m 2 2 X 5 m 2 2 D = 20 - (4m^2 - 8)X^2 \geq 0 \implies |X|^2 \leq \dfrac{5}{m^2 - 2} \implies |X| \leq \sqrt{\dfrac{5}{m^2 - 2}} \implies

x 2 + y 2 = 5 m 2 2 5 m 2 2 m + 3 = 3 5 m 2 1 m + 1 5 m 2 2 = 1 m = 7 x^2 + y^2 = \dfrac{5}{m^2 - 2} - \sqrt{\dfrac{5}{m^2 - 2}}m + 3 = 3 - \sqrt{\dfrac{5}{m^2 - 1}}m + 1 \implies \dfrac{5}{m^2 - 2} = 1 \implies m = \sqrt{7}

x 2 + y 2 = ( 4 7 ) \implies x^2 + y^2 = (4 - \sqrt{7}) and X 1 |X| \leq 1 .

Using m = 7 m = \sqrt{7} and X = 1 X = 1 \implies

x + y = 7 1 y = 4 7 2 x \begin{aligned} x+y &=& \sqrt{7} - 1 \\ y &=& \dfrac{4 - \sqrt{7}}{2x} \end{aligned}

2 x 2 2 ( 7 1 ) x + 4 7 = 0 x 0 = 7 1 2 y 0 = 4 7 7 1 = 7 1 2 3 x 0 + 7 y 0 = 5 ( 7 1 ) \implies 2x^2 - 2(\sqrt{7} - 1)x + 4 - \sqrt{7} = 0 \implies x_{0} = \dfrac{\sqrt{7} - 1}{2} \implies y_{0} = \dfrac{4 - \sqrt{7}}{\sqrt{7} - 1} = \dfrac{\sqrt{7} - 1}{2} \implies 3x_{0} + 7y_{0} = 5(\sqrt{7} - 1) 8.22875656 \approx \boxed{8.22875656} .

To show x + y = 7 1 x + y = \sqrt{7} - 1 is tangent to y = 4 7 2 x y = \dfrac{4 - \sqrt{7}}{2x} at ( 7 1 2 , 7 1 2 ) (\dfrac{\sqrt{7} - 1}{2},\dfrac{\sqrt{7} - 1}{2}) .

y = 4 7 2 x d y d x x = 7 1 2 = y = \dfrac{4 - \sqrt{7}}{2x} \implies \dfrac{dy}{dx}|_{x = \dfrac{\sqrt{7} - 1}{2}} = 4 7 2 x 2 x = 7 1 2 = 2 ( 4 7 ) ( 7 1 ) 2 = -\dfrac{4 - \sqrt{7}}{2x^2}|_{x = \dfrac{\sqrt{7} - 1}{2}} = \dfrac{-2(4 - \sqrt{7})}{(\sqrt{7} - 1)^2} =

( 4 7 ) ( 7 + 1 ) 3 ( 7 1 ) = 3 ( 7 1 ) 3 ( 7 1 ) = 1 -\dfrac{(4 - \sqrt{7})(\sqrt{7} + 1)}{3(\sqrt{7} - 1)} = \dfrac{-3(\sqrt{7} - 1)}{3(\sqrt{7} - 1)} = -1

y ( 7 1 2 ) = 1 ( x ( 7 1 2 ) x + y = 7 1 \implies y - (\dfrac{\sqrt{7} -1}{2}) = -1(x - (\dfrac{\sqrt{7} - 1}{2}) \implies \boxed{x + y = \sqrt{7} - 1} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...