Algebra Craze 3

Geometry Level pending

Let m m be a real number where m > 2 |m| > \sqrt{2} and x , y , x,y, and X X be real numbers satisfying the following system of equations: x + y = m X 1 x y = 1 2 ( ( m 2 1 ) X 2 m X 2 ) . \begin{aligned} x+y &=& mX - 1 \\ xy &=& \dfrac{1}{2}((m^2 - 1)X^2 - mX - 2). \end{aligned}

If the minimum value of x 2 + y 2 = 3 5 m 2 2 m + 1 x^2 + y^2 = 3 - \sqrt{\dfrac{5}{m^2 - 2}}m + 1

(1) FInd the value of m > 2 m > \sqrt{2} for which the line x + y = m X 1 x + y = mX - 1 is tangent to the curve x y = 1 2 ( ( m 2 1 ) X 2 m X 2 ) xy = \dfrac{1}{2}((m^2 - 1)X^2 - mX - 2) at point A ( x 0 , y 0 ) A (x_{0},y_{0}) .

(2) FInd the value of m < 2 m < -\sqrt{2} for which the line x + y = m X 1 x + y = mX - 1 is tangent to the curve x y = 1 2 ( ( m 2 1 ) X 2 m X 2 ) xy = \dfrac{1}{2}((m^2 - 1)X^2 - mX - 2) at point B ( x 0 , y 0 ) B (x^{*}_{0},y^{*}_{0}) .

(3) Find the distance d d to eight decimal places.

Refer to previous problem


The answer is 3.74165739.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jun 19, 2018

Let m > 2 |m| > \sqrt{2} .

x + y = m X 1 x y = 1 2 ( ( m 2 1 ) X 2 m X 2 ) \begin{aligned} x+y &=& mX - 1 \\ xy &=& \dfrac{1}{2}((m^2 - 1)X^2 - mX - 2) \end{aligned}

\implies

( x + y ) 2 = m 2 X 2 2 m X + 1 2 x y = ( m 2 1 ) X 2 m X 2 \begin{aligned} (x+y)^2 &=& m^2X^2 - 2mX + 1\\ 2xy &=& (m^2 - 1)X^2 - mX - 2 \end{aligned}

( x + y ) 2 2 x y = x 2 + y 2 = X 2 m X + 3 \implies (x + y)^2 - 2xy = x^2 + y^2 = X^2 - mX + 3 .

x = ( m 2 1 ) X 2 m X 2 2 y 2 y 2 2 ( m X 1 ) y + ( ( m 2 1 ) 2 m X 2 ) = 0 x = \dfrac{(m^2 - 1)X^2 - mX - 2}{2y} \implies 2y^2 - 2(mX - 1)y + ((m^2 - 1)^2 - mX - 2) = 0 which has real value solutions whenever the discriminant D = 20 ( 4 m 2 8 ) X 2 0 X 2 5 m 2 2 X 5 m 2 2 D = 20 - (4m^2 - 8)X^2 \geq 0 \implies |X|^2 \leq \dfrac{5}{m^2 - 2} \implies |X| \leq \sqrt{\dfrac{5}{m^2 - 2}} \implies

x 2 + y 2 = 5 m 2 2 5 m 2 2 m + 3 = 3 5 m 2 1 m + 1 5 m 2 2 = 1 m = ± 7 x^2 + y^2 = \dfrac{5}{m^2 - 2} - \sqrt{\dfrac{5}{m^2 - 2}}m + 3 = 3 - \sqrt{\dfrac{5}{m^2 - 1}}m + 1 \implies \dfrac{5}{m^2 - 2} = 1 \implies m = \pm\sqrt{7}

For m > 2 m = 7 x 2 + y 2 = ( 4 7 ) m > \sqrt{2} \implies m = \sqrt{7} \implies x^2 + y^2 = (4 - \sqrt{7}) and X 1 |X| \leq 1 .

Using m = 7 m = \sqrt{7} and X = 1 X = 1 \implies

x + y = 7 1 y = 4 7 2 x \begin{aligned} x+y &=& \sqrt{7} - 1 \\ y &=& \dfrac{4 - \sqrt{7}}{2x} \end{aligned}

2 x 2 2 ( 7 1 ) x + 4 7 = 0 x 0 = 7 1 2 y 0 = 4 7 7 1 = 7 1 2 \implies 2x^2 - 2(\sqrt{7} - 1)x + 4 - \sqrt{7} = 0 \implies \boxed{x_{0} = \dfrac{\sqrt{7} - 1}{2} \implies y_{0} = \dfrac{4 - \sqrt{7}}{\sqrt{7} - 1} = \dfrac{\sqrt{7} - 1}{2}}

and

y = 4 7 2 x d y d x x = 7 1 2 = y = \dfrac{4 - \sqrt{7}}{2x} \implies \dfrac{dy}{dx}|_{x = \dfrac{\sqrt{7} - 1}{2}} = 4 7 2 x 2 x = 7 1 2 = 2 ( 4 7 ) ( 7 1 ) 2 = -\dfrac{4 - \sqrt{7}}{2x^2}|_{x = \dfrac{\sqrt{7} - 1}{2}} = \dfrac{-2(4 - \sqrt{7})}{(\sqrt{7} - 1)^2} =

( 4 7 ) ( 7 + 1 ) 3 ( 7 1 ) = 3 ( 7 1 ) 3 ( 7 1 ) = 1 -\dfrac{(4 - \sqrt{7})(\sqrt{7} + 1)}{3(\sqrt{7} - 1)} = \dfrac{-3(\sqrt{7} - 1)}{3(\sqrt{7} - 1)} = -1

y ( 7 1 2 ) = 1 ( x ( 7 1 2 ) x + y = 7 1 \implies y - (\dfrac{\sqrt{7} -1}{2}) = -1(x - (\dfrac{\sqrt{7} - 1}{2}) \implies \boxed{x + y = \sqrt{7} - 1} .

For m < 2 m = 7 m < -\sqrt{2} \implies m = -\sqrt{7} and X = 1 X = 1 \implies

x + y = ( 7 + 1 ) y = 4 + 7 2 x \begin{aligned} x+y &=& -(\sqrt{7} + 1) \\ y &=& \dfrac{4 + \sqrt{7}}{2x} \end{aligned}

2 x 2 + 2 ( 7 + 1 ) x + 4 + 7 = 0 x 0 = 7 + 1 2 y 0 = 7 + 1 2 \implies 2x^2 + 2(\sqrt{7} + 1)x + 4 + \sqrt{7} = 0 \implies \boxed{x^{*}_{0} = -\dfrac{\sqrt{7} + 1}{2} \implies y^{*}_{0} = -\dfrac{\sqrt{7} + 1}{2}}

and

y = 4 + 7 2 x d y d x x = 7 + 1 2 = y = \dfrac{4 + \sqrt{7}}{2x} \implies \dfrac{dy}{dx}|_{x = -\dfrac{\sqrt{7} + 1}{2}} = 4 + 7 2 x 2 x = 7 + 1 2 -\dfrac{4 + \sqrt{7}}{2x^2}|_{x = -\dfrac{\sqrt{7} + 1}{2}} = 2 ( 4 + 7 ) ( 7 + 1 ) 2 = = \dfrac{-2(4 + \sqrt{7})}{(\sqrt{7} + 1)^2} =

( 4 + 7 ) ( 7 1 ) 3 ( 7 + 1 ) = 3 ( 7 + 1 ) 3 ( 7 + 1 ) = 1 -\dfrac{(4 + \sqrt{7})(\sqrt{7} - 1)}{3(\sqrt{7} + 1)} = \dfrac{-3(\sqrt{7} + 1)}{3(\sqrt{7} +1)} = -1

x + y = ( 7 + 1 ) \implies \boxed{x + y = -(\sqrt{7} + 1)} .

Using points A ( x 0 , y 0 ) A (x_{0},y_{0}) and B ( x 0 , y 0 ) B (x^{*}_{0},y^{*}_{0}) \implies the distance d = 14 3.74165739 d = \sqrt{14} \approx \boxed{3.74165739} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...