The problem below is a variation of a brilliant problem of the week.
Let m and n be real numbers where m > 2 and let a , b , and x be real numbers satisfying the following system of equations: a + b a b = = m x − n 2 1 ( ( m 2 − 1 ) x 2 − m n x − 2 n 2 ) .
If the minimum value of
a
2
+
b
2
=
(
3
−
m
2
−
2
5
m
+
1
)
n
2
and
n
2
a
2
+
b
2
=
α
α
−
β
, where
α
and
β
are coprime positive integers, find
α
+
β
.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Let m > 2 .
a + b a b = = m x − n 2 1 ( ( m 2 − 1 ) x 2 − m n x − 2 n 2 )
⟹
( a + b ) 2 2 a b = = m 2 x 2 − 2 m n x + n 2 ( m 2 − 1 ) x 2 − m n x − 2 n 2
⟹ ( a + b ) 2 − 2 a b = a 2 + b 2 = x 2 − m n x + 3 n 2 .
a = 2 b ( m 2 − 1 ) x 2 − m n x − 2 n 2 ⟹ 2 b 2 − 2 ( m x − n ) b + ( ( m 2 − 1 ) 2 − m n x − 2 n 2 ) = 0 which has real value solutions whenever the discriminant D = 2 0 n 2 − ( 4 m 2 − 8 ) x 2 ≥ 0 ⟹ ∣ x ∣ 2 ≤ m 2 − 2 5 n 2 ⟹ ∣ x ∣ ≤ m 2 − 2 5 n ⟹
a 2 + b 2 = ( m 2 − 2 5 − m 2 − 2 5 m + 3 ) n 2 = ( 3 − m 2 − 1 5 ) n 2 ⟹ m 2 − 2 5 = 1 ⟹ m = 7
⟹ a 2 + b 2 = ( 4 − 7 ) n 2 ⟹ n 2 a 2 + b 2 = 2 2 − 7 = α α − β ⟹ α + β = 9 .