Algebra Craze

Algebra Level 4

The problem below is a variation of a brilliant problem of the week.

Let m m and n n be real numbers where m > 2 m > \sqrt{2} and let a , b , a,b, and x x be real numbers satisfying the following system of equations: a + b = m x n a b = 1 2 ( ( m 2 1 ) x 2 m n x 2 n 2 ) . \begin{aligned} a+b &=& mx - n \\ ab &=& \dfrac{1}{2}((m^2 - 1)x^2 - mnx - 2n^2). \end{aligned}

If the minimum value of a 2 + b 2 = ( 3 5 m 2 2 m + 1 ) n 2 a^2 + b^2 = (3 - \sqrt{\dfrac{5}{m^2 - 2}}m + 1)n^2 and
a 2 + b 2 n 2 = α α β \dfrac{a^2 + b^2}{n^2} = \alpha^{\alpha} - \sqrt{\beta} , where α \alpha and β \beta are coprime positive integers, find α + β \alpha + \beta .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jun 18, 2018

Let m > 2 m > \sqrt{2} .

a + b = m x n a b = 1 2 ( ( m 2 1 ) x 2 m n x 2 n 2 ) \begin{aligned} a+b &=& mx - n \\ ab &=& \dfrac{1}{2}((m^2 - 1)x^2 - mnx - 2n^2) \end{aligned}

\implies

( a + b ) 2 = m 2 x 2 2 m n x + n 2 2 a b = ( m 2 1 ) x 2 m n x 2 n 2 \begin{aligned} (a+b)^2 &=& m^2x^2 - 2mnx + n^2\\ 2ab &=& (m^2 - 1)x^2 - mnx - 2n^2 \end{aligned}

( a + b ) 2 2 a b = a 2 + b 2 = x 2 m n x + 3 n 2 \implies (a + b)^2 - 2ab = a^2 + b^2 = x^2 - mnx + 3n^2 .

a = ( m 2 1 ) x 2 m n x 2 n 2 2 b 2 b 2 2 ( m x n ) b + ( ( m 2 1 ) 2 m n x 2 n 2 ) = 0 a = \dfrac{(m^2 - 1)x^2 - mnx - 2n^2}{2b} \implies 2b^2 - 2(mx - n)b + ((m^2 - 1)^2 - mnx - 2n^2) = 0 which has real value solutions whenever the discriminant D = 20 n 2 ( 4 m 2 8 ) x 2 0 x 2 5 m 2 2 n 2 x 5 m 2 2 n D = 20n^2 - (4m^2 - 8)x^2 \geq 0 \implies |x|^2 \leq \dfrac{5}{m^2 - 2}n^2 \implies |x| \leq \sqrt{\dfrac{5}{m^2 - 2}}n \implies

a 2 + b 2 = ( 5 m 2 2 5 m 2 2 m + 3 ) n 2 = ( 3 5 m 2 1 ) n 2 5 m 2 2 = 1 m = 7 a^2 + b^2 = (\dfrac{5}{m^2 - 2} - \sqrt{\dfrac{5}{m^2 - 2}}m + 3)n^2 = (3 - \sqrt{\dfrac{5}{m^2 - 1}})n^2 \implies \dfrac{5}{m^2 - 2} = 1 \implies m = \sqrt{7}

a 2 + b 2 = ( 4 7 ) n 2 \implies a^2 + b^2 = (4 - \sqrt{7})n^2 \implies a 2 + b 2 n 2 = 2 2 7 = α α β α + β = 9 \dfrac{a^2 + b^2}{n^2} = 2^2 - \sqrt{7} = \alpha^{\alpha} - \sqrt{\beta} \implies \alpha + \beta = \boxed{9} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...