y = 3 x + x 2 + 1 + 3 x − x 2 + 1
Given the above equation, find x in terms of y .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let A = x 2 + 1 ⇒ A 2 = x 2 + 1 ,also we have that ( a + b ) 3 = a 3 + b 3 + 3 a b ( a + b ) then our expression becomes y y 3 y 3 = 3 x + A + 3 x − A = 2 x + 3 3 ( x + A ) ( x − A ) ( 3 x + A + 3 x − A ) = 2 x + 3 y 3 x 2 − A 2 Undo the substitution of A 2 and simplying we have y 3 = 2 x − 3 y ⟹ x = 2 y ( y 2 + 3 )
Problem Loading...
Note Loading...
Set Loading...
y y 3 = 3 x + x 2 + 1 + 3 x − x 2 + 1 = x + x 2 + 1 + 3 ( 3 x + x 2 + 1 ) 2 3 x − x 2 + 1 + 3 3 x + x 2 + 1 ( 3 x − x 2 + 1 ) 2 + x − x 2 + 1 = 2 x + 3 3 ( x + x 2 + 1 ) ( x − x 2 + 1 ) ( 3 x + x 2 + 1 + 3 x − x 2 + 1 ) = 2 x + 3 3 − 1 y = 2 x − 3 y Cubing both sides.
⟹ x = 2 y 3 + 3 y = 2 y ( y 2 + 3 )