Algebra Equation

Algebra Level 2

Let a = 5 + 1 5 1 a = \sqrt{ \dfrac{\sqrt5 + 1}{\sqrt5 - 1} } . Find the value of 5 a 2 5 a 1 5a^2 - 5a - 1 .

5 3 4 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ikkyu San
May 12, 2016

a = 5 + 1 5 1 = ( 5 + 1 ) ( 5 + 1 ) ( 5 1 ) ( 5 + 1 ) = ( 5 + 1 ) 2 5 1 = 5 + 1 2 a=\sqrt{\dfrac{\sqrt5+1}{\sqrt5-1}}=\sqrt{\dfrac{(\sqrt5+1)(\sqrt5+1)}{(\sqrt5-1)(\sqrt5+1)}}=\sqrt{\dfrac{(\sqrt5+1)^2}{5-1}}=\dfrac{\sqrt5+1}2

but 5 + 1 2 \dfrac{\sqrt5+1}2 is a root of quadratic equation a 2 a 1 = 0 a^2-a-1=0 . Thus, 5 a 2 5 a 5 = 0 5 a 2 5 a 1 = 0 + 4 = 4 5a^2-5a-5=0\implies5a^2-5a-1=0+4=\boxed4

Hung Woei Neoh
May 12, 2016

a = 5 + 1 5 1 = ( 5 + 1 ) ( 5 + 1 ) ( 5 1 ) ( 5 + 1 ) = ( 5 + 1 ) 2 5 1 = 5 + 1 2 a = \sqrt{\dfrac{\sqrt{5}+1}{\sqrt{5}-1}}\\ =\sqrt{\dfrac{(\sqrt{5} + 1)(\sqrt{5} + 1)}{(\sqrt{5}-1)(\sqrt{5}+1)}}\\ =\sqrt{\dfrac{(\sqrt{5} + 1)^2}{5-1}}\\ =\dfrac{\sqrt{5}+1}{2}

Substitute it into the expression given:

5 a 2 5 a 1 = 5 a ( a 1 ) 1 = 5 ( 5 + 1 2 ) ( 5 + 1 2 1 ) 1 = 5 ( 5 + 1 2 ) ( 5 + 1 2 2 2 ) 1 = 5 2 ( 5 + 1 ) ( 5 + 1 2 2 ) 1 = 5 4 ( 5 + 1 ) ( 5 1 ) 1 = 5 4 ( 5 1 ) 1 = 5 4 ( 4 ) 1 = 5 1 = 4 5a^2 - 5a - 1\\ =5a(a-1) - 1\\ =5\left(\dfrac{\sqrt{5}+1}{2}\right)\left(\dfrac{\sqrt{5}+1}{2} - 1\right) - 1\\ =5\left(\dfrac{\sqrt{5}+1}{2}\right)\left(\dfrac{\sqrt{5}+1}{2} - \dfrac{2}{2}\right) - 1\\ =\dfrac{5}{2}\left(\sqrt{5}+1\right)\left(\dfrac{\sqrt{5}+1-2}{2}\right) - 1\\ =\dfrac{5}{4}\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right) - 1\\ =\dfrac{5}{4}\left(5-1\right) - 1\\ =\dfrac{5}{4}(4) - 1\\ =5-1\\ =\boxed{4}

I did it in the same way...

Puneet Pinku - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...