Let a = 5 − 1 5 + 1 . Find the value of 5 a 2 − 5 a − 1 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
a = 5 − 1 5 + 1 = ( 5 − 1 ) ( 5 + 1 ) ( 5 + 1 ) ( 5 + 1 ) = 5 − 1 ( 5 + 1 ) 2 = 2 5 + 1
Substitute it into the expression given:
5 a 2 − 5 a − 1 = 5 a ( a − 1 ) − 1 = 5 ( 2 5 + 1 ) ( 2 5 + 1 − 1 ) − 1 = 5 ( 2 5 + 1 ) ( 2 5 + 1 − 2 2 ) − 1 = 2 5 ( 5 + 1 ) ( 2 5 + 1 − 2 ) − 1 = 4 5 ( 5 + 1 ) ( 5 − 1 ) − 1 = 4 5 ( 5 − 1 ) − 1 = 4 5 ( 4 ) − 1 = 5 − 1 = 4
I did it in the same way...
Problem Loading...
Note Loading...
Set Loading...
a = 5 − 1 5 + 1 = ( 5 − 1 ) ( 5 + 1 ) ( 5 + 1 ) ( 5 + 1 ) = 5 − 1 ( 5 + 1 ) 2 = 2 5 + 1
but 2 5 + 1 is a root of quadratic equation a 2 − a − 1 = 0 . Thus, 5 a 2 − 5 a − 5 = 0 ⟹ 5 a 2 − 5 a − 1 = 0 + 4 = 4