My first problem

Algebra Level 4

( a 3 + b 3 + c 3 ) 2 ( a 4 + b 4 + c 4 ) ( a 5 + b 5 + c 5 ) 2 \dfrac{(a^3+b^3+c^3)^2 (a^4+b^4+c^4)}{(a^5+b^5+c^5)^2} Let a , b a, b and c c be ​​non-zero real numbers such that a + b + c = 0 a + b + c = 0 . The value of the above expression can be represented by m n \dfrac mn , both coprime positive integers. Calculate the value of m + n m+n .


The answer is 43.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

We can use Newton's sums method to solve this problem. Let P n = a n + b n + c n P_n = a^n + b^n + c^n , S 1 = a + b + c = P 1 = 0 S_1 = a+b+c =P_1=0 , S 2 = a b + b c + c a S_2 = ab+bc+ca and S 3 = a b c S_3 = abc . Then, we have:

\(\begin{array} {} P_2 = a^2+b^2+c^2 = S_1P_1 -2S_2 = 0 - 2S_2 & = -2S_2 \\ P_3 = a^3+b^3+c^3 = S_1P_2 -S_2P_1 + 3S_3 = 0 - 0 + 3S_3 & = 3S_3 \\ P_4 = a^4+b^4+c^4 = S_1P_3 -S_2P_2 + S_3P_1 = 0 - S_2(-2S_2) + 0 & = 2S_2^2 \\ P_5 = a^5+b^5+c^5 = S_1P_4 -S_2P_3 + S_3P_2 = 0 - S_2(3S_3) + S_3(-2S_2) & = -5S_2S_3 \end{array} \)

( a 3 + b 3 + c 3 ) 2 ( a 4 + b 4 + c 4 ) ( a 5 + b 5 + c 5 ) = P 3 2 P 4 P 5 2 = ( 3 S 3 ) 2 ( 2 S 2 2 ) ( 5 S 2 S 3 ) 2 = 18 25 \Rightarrow \dfrac{(a^3+b^3+c^3)^2(a^4+b^4+c^4)}{(a^5+b^5+ c^5)} = \dfrac{P_3^2P_4}{P_5^2} = \dfrac{(3S_3)^2(2S_2^2)}{(-5S_2S_3)^2} = \dfrac{18}{25}

m + n = 18 + 25 = 43 \Rightarrow m + n = 18 + 25 = \boxed{43}

Did the same way.

Anupam Nayak - 5 years, 5 months ago

Did the same way.

Samarth Agarwal - 5 years, 5 months ago
Patrick Heebels
Jan 4, 2016

The problem allows substituting any three non-zero real values for a , b and c as long as a + b + c = 0 a+b+c=0 and the denominator is non-zero.

Let a = 2 a=2 and b = c = 1 b=c=-1 .

Substituting gives:

( 8 1 1 ) 2 ( 16 + 1 + 1 ) ( 32 1 1 ) 2 = \dfrac{ (8-1-1)^2 \cdot (16+1+1) }{ (32-1-1)^2 } =

6 2 18 3 0 2 = 18 5 2 = 18 25 = m n \dfrac{ 6^2 \cdot 18 }{ 30^2 } = \dfrac{ 18 }{ 5^2 } = \dfrac{ 18 }{ 25 } = \dfrac{ m }{ n }

So m + n = 18 + 25 = 43 m + n = 18 + 25 = 43 .

I did it in a same way.

Panya Chunnanonda - 5 years, 5 months ago

I Also did in the same way and even used the same values of a,b,c ! :)

Prakhar Bindal - 5 years, 5 months ago

Nice solution

Lucas Emanuel - 5 years, 5 months ago

Nice solution! :)

Samarth Agarwal - 5 years, 5 months ago

Nice solution

Lee Care Gene - 5 years, 5 months ago
Lucas Emanuel
Jan 5, 2016

By the statement we have a+b+c=0. Then, we have :

replacing the expression

I used Newton sum here.

First finding ( a 3 + b 3 + c 3 ) (a^3+b^3+c^3) .

a 3 + b 3 + c 3 = ( a + b + c ) ( a 2 + b 2 + c 2 ) ( a b b c c a ) ( a + b + c ) + 3 a b c a^3+b^3+c^3=(a+b+c)(a^2+b^2+c^2)-(ab-bc-ca)(a+b+c)+3abc
a 3 + b 3 + c 3 = 3 a b c a^3+b^3+c^3=3abc
( a 3 + b 3 + c 3 ) 2 = 9 ( a b c ) 2 \Rightarrow (a^3+b^3+c^3)^2=\boxed{9(abc)^2}

Second finding ( a 4 + b 4 + c 4 ) (a^4+b^4+c^4) .

a 4 + b 4 + c 4 = ( a 2 + b 2 + c 2 ) 2 2 [ ( a b ) 2 + ( b c ) 2 + ( c a ) 2 ] a^4+b^4+c^4=(a^2+b^2+c^2)^2-2[(ab)^2+(bc)^2+(ca)^2]
a 4 + b 4 + c 4 = [ ( a + b + c ) 2 2 ( a b + b c + c a ) ] 2 [ ( a b ) 2 + ( b c ) 2 + ( c a ) 2 ] a^4+b^4+c^4=[(a+b+c)^2-2(ab+bc+ca)]-2[(ab)^2+(bc)^2+(ca)^2]
a 4 + b 4 + c 4 = 2 [ ( a b ) 2 + ( b c ) 2 + ( c a ) 2 ] \Rightarrow a^4+b^4+c^4=\boxed{2[(ab)^2+(bc)^2+(ca)^2]}

Third finding ( a 5 + b 5 + c 5 ) (a^5+b^5+c^5) .

a 5 + b 5 + c 5 = ( a + b + c ) ( a 4 + b 4 + c 4 ) ( a b + b c + c a ) ( a 3 + b 3 + c 3 ) + a b c ( a 2 + b 2 + c 2 ) a^5+b^5+c^5=(a+b+c)(a^4+b^4+c^4)-(ab+bc+ca)(a^3+b^3+c^3)+abc(a^2+b^2+c^2)
a 5 + b 5 + c 5 = ( a b + b c + c a ) ( 5 a b c ) a^5+b^5+c^5=(ab+bc+ca)(-5abc)
( a 5 + b 5 + c 5 ) 2 = ( a b + b c + c a ) 2 ( 5 a b c ) 2 = [ ( a b ) 2 + ( b c ) 2 + ( c a ) 2 ] ( 5 a b c ) 2 \Rightarrow (a^5+b^5+c^5)^2=(ab+bc+ca)^2(-5abc)^2=\boxed{[(ab)^2+(bc)^2+(ca)^2](-5abc)^2}

( a 3 + b 3 + c 3 ) 2 ( a 4 + b 4 + c 4 ) ( a 5 + b 5 + c 5 ) 2 \Rightarrow \dfrac{(a^3+b^3+c^3)^2(a^4+b^4+c^4)}{(a^5+b^5+c^5)^2}

9 ( a b c ) 2 × 2 [ ( a b ) 2 + ( b c ) 2 + ( c a ) 2 ] [ ( a b ) 2 + ( b c ) 2 + ( c a ) 2 ] × 25 ( a b c ) 2 \Rightarrow \dfrac{9(abc)^2×2[(ab)^2+(bc)^2+(ca)^2]}{[(ab)^2+(bc)^2+(ca)^2]×25(abc)^2}

18 25 = m n \Rightarrow \dfrac{18}{25}=\dfrac{m}{n}

m + n = 18 + 25 = 43 \Rightarrow m+n=18+25=\boxed{43}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...