Algebra Frenzy - Part 4

Algebra Level 2

If x + 1 x = 3 \displaystyle x+\frac{1}{x}=3 , which is one of the possible results of x 2 1 x 2 ? \displaystyle x^2-\frac{1}{x^2}?

7 \displaystyle 7 5 \displaystyle \sqrt{5} 3 \displaystyle 3 3 5 \displaystyle -3 \sqrt{5}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chris Sapiano
May 18, 2019

Let us assign x 2 1 x 2 = a x ^ 2 -\frac {1}{x ^ 2} = a

( x + 1 x x + \frac {1}{x} ) ( x 1 x x - \frac {1}{x} ) = a = a

Substituting in from given equation: 3 3 ( x 1 x x - \frac {1}{x} ) = a = a and therefore ( x 1 x x - \frac {1}{x} ) = a 3 = \frac {a}{3}

( x 1 x ) 2 x - \frac {1}{x}) ^ 2 = x 2 + 1 x 2 2 = x ^ 2 + \frac{1}{x ^ 2} - 2 = a 2 9 = \frac {a ^ 2}{9}

x 2 + 1 x 2 + 2 x ^ 2 + \frac{1}{x ^ 2} + 2 = a 2 9 + 4 = \frac {a ^ 2}{9} + 4

Square rooting both sides we get: x + 1 x = a 2 9 + 4 x + \frac {1}{x} = \sqrt{\frac {a ^ 2}{9} + 4}

Substituting in from given equation: 3 = a 2 9 + 4 3 = \sqrt{\frac {a ^ 2}{9} + 4}

Rearrange for a 9 = a 2 9 + 4 9 = \frac {a ^ 2}{9} + 4

5 = a 2 9 5 = \frac {a ^ 2}{9} and a 2 = 45 a ^ 2 = 45

a = ± 3 5 a = \boxed{\pm 3 {\sqrt{5}}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...