Algebra + Geometry

Algebra Level 4

12 x 4 56 x 3 + 89 x 2 56 x + 12 12x^{4}-56x^{3}+89x^{2}-56x+12

Given that the roots of the polynomial above are x 1 , x 2 , x 3 , x 4 x_{1},x_{2},x_{3},x_{4} in increasing order.

Find the area of the quadrilateral with vertices ( x 1 2 , x 2 2 ) , ( x 2 2 , x 3 2 ) , ( x 3 2 , x 4 2 ) , ( x 4 2 , x 1 2 ) . (\lfloor x_{1} \rfloor^{2},\lfloor x_{2} \rfloor^{2}),(\lfloor x_{2} \rfloor^{2},\lfloor x_{3} \rfloor^{2}),(\lfloor x_{3} \rfloor^{2},\lfloor x_{4} \rfloor^{2}),(\lfloor x_{4} \rfloor^{2},\lfloor x_{1} \rfloor^{2}).

If your answer comes as a b \dfrac{a}{b} where a a and b b are coprime positive integers, submit your answer as a + b a+b .


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

12 x 4 56 x 3 + 89 x 2 56 x + 12 = 0 Divide both sides by x 2 12 x 2 56 x + 89 56 x + 12 x 2 = 0 12 ( x + 1 x ) 2 56 ( x + 1 x ) + 65 = 0 Let y = x + 1 x 12 y 2 56 y + 65 = 0 ( 6 y 13 ) ( 2 y 5 ) = 0 \begin{aligned} 12x^4-56x^3+89x^2-56x+12 & = 0 \quad \quad \small \color{#3D99F6}{\text{Divide both sides by } x^2} \\ 12x^2-56x+89-\frac{56}{x}+\frac{12}{x^2} & = 0 \\ 12 \left(x+\frac{1}{x}\right)^2 - 56 \left(x+\frac{1}{x}\right) + 65 & = 0 \quad \quad \small \color{#3D99F6}{\text{Let } y = x + \frac{1}{x}} \\ \Rightarrow 12y^2 - 56y + 65 & = 0 \\ (6y-13)(2y-5) & = 0 \end{aligned}

{ x + 1 x = 13 6 6 x 2 13 x + 6 = 0 ( 3 x 2 ) ( 2 x 3 ) = 0 x = { 2 3 = x 2 3 2 = x 3 x + 1 x = 5 2 2 x 2 5 x + 2 = 0 ( 2 x 1 ) ( x 2 ) = 0 x = { 1 2 = x 1 2 = x 4 \Rightarrow \begin{cases} x+\frac{1}{x} = \dfrac{13}{6} & \Rightarrow 6x^2 -13x+6 = 0 & \Rightarrow (3x-2)(2x-3)=0 & \Rightarrow x = \begin{cases} \dfrac{2}{3} = x_2 \\ \dfrac{3}{2} = x_3 \end{cases} \\ x+\frac{1}{x} = \dfrac{5}{2} & \Rightarrow 2x^2 -5x+2 = 0 & \Rightarrow (2x-1)(x-2)=0 & \Rightarrow x = \begin{cases} \dfrac{1}{2} = x_1\\ \space 2 = x_4 \end{cases} \end{cases}

Therefore the vertices of the quadrilateral are: { ( x 1 2 , x 2 2 ) = ( 1 2 2 , 2 3 2 ) = ( 0 , 0 ) ( x 2 2 , x 3 2 ) = ( 2 3 2 , 3 2 2 ) = ( 0 , 1 ) ( x 3 2 , x 4 2 ) = ( 3 2 2 , 2 2 ) = ( 1 , 4 ) ( x 4 2 , x 1 2 ) = ( 2 2 , 1 2 2 ) = ( 4 , 0 ) \begin{cases} ( \lfloor x_1 \rfloor ^2, \lfloor x_2 \rfloor ^2) = \left( \left \lfloor \frac{1}{2} \right \rfloor ^2, \left \lfloor \frac{2}{3} \right \rfloor ^2 \right) = (0,0) \\ ( \lfloor x_2 \rfloor ^2, \lfloor x_3 \rfloor ^2) = \left( \left \lfloor \frac{2}{3} \right \rfloor ^2, \left \lfloor \frac{3}{2} \right \rfloor ^2 \right) = (0,1) \\ ( \lfloor x_3 \rfloor ^2, \lfloor x_4 \rfloor ^2) = \left( \left \lfloor \frac{3}{2} \right \rfloor ^2, \left \lfloor 2 \right \rfloor ^2 \right) = (1,4) \\ ( \lfloor x_4 \rfloor ^2, \lfloor x_1 \rfloor ^2) = \left( \left \lfloor 2 \right \rfloor ^2, \left \lfloor \frac{1}{2} \right \rfloor ^2 \right) = (4,0) \end{cases}

The quadrilateral is as show below and its area = 1 × 3 2 + 1 × 1 + 3 × 4 2 = 17 2 = \dfrac{1\times 3}{2} + 1 \times 1 + \dfrac{3 \times 4}{2} = \dfrac{17}{2}

a + b = 17 + 2 = 19 \Rightarrow a + b = 17+2 = \boxed{19}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...