Algebra or calculus?

Calculus Level 3

If y y = e x 3 e^{\frac{x}{3}} ,

Find n = 1 d n y d x n \sum_{n=1}^∞ \dfrac{d^{n}y}{dx^{n}}

Find The answer When x=3

Give Your answer Upto 2 Decimals


The answer is 1.352.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tom Engelsman
Nov 29, 2014

If y = e x / 3 y = e^{x/3} , then y = 1 3 e x / 3 , y = 1 9 e x / 3 , y = 1 27 e x / 3 , . . . . , y ( n ) = 1 3 n e x / 3 y' = \frac{1}{3}e^{x/3}, y'' = \frac{1}{9}e^{x/3}, y''' = \frac{1}{27}e^{x/3}, .... , y^{(n)} = \frac{1}{3^n}e^{x/3} . Hence, the infinite series computes as:

Σ n = 1 e x / 3 3 n \Sigma_{n=1}^{\infty} \frac{e^{x/3}}{3^n} ;

or e x / 3 Σ n = 1 ( 1 3 ) n e^{x/3} \cdot \Sigma_{n=1}^{\infty} (\frac{1}{3})^n ;

or e x / 3 1 / 3 1 1 / 3 = 1 2 e x / 3 . e^{x/3} \cdot \frac{1/3}{1 - 1/3} = \frac{1}{2}e^{x/3}.

At x = 3 x=3 , we finally obtain e 2 = 1.36 \boxed{\frac{e}{2} = 1.36} (to 2 decimal places).

Aravind M
Oct 11, 2014

It is of the form y' +y''+y'''+y''''......... ==> e^(x/3). *( 1/3 + 1/9 + 1/27 + 1/81......) Y/2....(y=e^x/3)..... When x=3, the and is e/2=== 1.3591....

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...