Algebra Or Discrete Or Calculus?

L = lim n r = 1 n t = 0 r 1 1 5 n ( n r ) ( r t ) 3 t L = \lim_{n\to \infty} \sum_{r=1}^{n} \sum_{t=0}^{r-1} \frac 1{5^n} \binom nr \binom rt 3^t

Given the above, find the value of L 99 + 9 9 L L^{99} + 99^L .

Notation: ( N M ) = N ! M ! ( N M ) ! \dbinom NM = \dfrac {N!}{M!(N-M)!} denotes the binomial coefficient .


The answer is 100.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 29, 2018

Relevant wiki: Binomial Theorem - Expansions - Basic

L = lim n r = 1 n t = 0 r 1 1 5 n ( n r ) ( r t ) 3 t = lim n 1 5 n r = 1 n ( n r ) t = 0 r 1 ( r t ) 3 t = lim n 1 5 n r = 1 n ( n r ) ( t = 0 r ( r t ) 3 t 3 r ) By binomial theorem = lim n 1 5 n r = 1 n ( n r ) ( ( 1 + 3 ) r 3 r ) = lim n 1 5 n ( r = 0 n ( n r ) ( 4 r 3 r ) ( n 0 ) ( 4 0 3 0 ) ) = lim n 1 5 n r = 0 n ( n r ) ( 4 r 3 r ) = lim n 1 5 n ( r = 0 n ( n r ) 4 r r = 0 n ( n r ) 3 r ) = lim n 1 5 n ( 5 n 4 n ) = lim n 1 ( 4 5 ) n = 1 \begin{aligned} L & = \lim_{n \to \infty} \sum_{r=1}^n \sum_{t=0}^{r-1} \frac 1{5^n}\binom nr \binom rt3^t \\ & = \lim_{n \to \infty} \frac 1{5^n} \sum_{r=1}^n \binom nr \sum_{t=0}^{\color{#3D99F6}r-1} \binom rt3^t \\ & = \lim_{n \to \infty} \frac 1{5^n} \sum_{r=1}^n \binom nr \left({\color{#3D99F6}\sum_{t=0}^{\color{#D61F06}r} \binom rt3^t} - 3^r\right) & \small \color{#3D99F6} \text{By binomial theorem} \\ & = \lim_{n \to \infty} \frac 1{5^n} \sum_{\color{#D61F06}r=1}^n \binom nr \left({\color{#3D99F6}(1+3)^r} - 3^r\right) \\ & = \lim_{n \to \infty} \frac 1{5^n} \left( \sum_{\color{#3D99F6}r=0}^n \binom nr \left(4^r - 3^r\right) - \binom n0 \left(4^0 - 3^0\right) \right) \\ & = \lim_{n \to \infty} \frac 1{5^n} \sum_{r=0}^n \binom nr \left(4^r - 3^r\right) \\ & = \lim_{n \to \infty} \frac 1{5^n} \left(\sum_{r=0}^n \binom nr 4^r - \sum_{r=0}^n \binom nr 3^r \right) \\ & = \lim_{n \to \infty} \frac 1{5^n} \left(5^n - 4^n \right) \\ & = \lim_{n \to \infty} 1- \left(\frac 45 \right)^n \\ & = 1 \end{aligned}

Therefore, L 99 + 9 9 L = 1 + 99 = 100 L^{99}+99^L = 1+99 = \boxed{100} .

In the third line, when you change the upper limit of the summation from r 1 r-1 to r r , shouldn't it say i = 0 r ( r t ) 3 t 3 r \displaystyle\sum_{i=0}^r \binom{r}{t} 3^t - \color{#20A900} 3^r rather than i = 0 r ( r t ) 3 t 1 \displaystyle\sum_{i=0}^r \binom{r}{t} 3^t - 1 ? The rest of the proof would still work with minor modifications.

zico quintina - 3 years, 1 month ago

Log in to reply

Thanks, you are right. I have changed the solution.

Chew-Seong Cheong - 3 years ago

The value of limit is equal to 1 i.e. L= 1 therefore L 99 + 9 9 L L^{99}+99^L = 100

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...