Algebra , Polynomials

Algebra Level 2

( b + c ) 2 b c + ( c + a ) 2 c a + ( a + b ) 2 a b \large\frac { { \left( b+c \right) }^{ 2 } }{ bc } +\frac { { \left( c+a \right) }^{ 2 } }{ ca } +\frac { { \left( a+b \right) }^{ 2 } }{ ab }

If a + b + c = 0 a+b+c = 0 , what is the value of the expression above?

1 2 3 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ankit Vijay
Jun 2, 2014

( b + c ) 2 b c + ( c + a ) 2 c a + ( a + b ) 2 a b = a 2 b c + b 2 c a + c 2 a b = a 3 + b 3 + c 3 a b c = 3 a b c a b c = 3 ( Because if a + b + c = 0 , then a 3 + b 3 + c 3 = 3 a b c ) \begin{aligned} \frac { { \left( b+c \right) }^{ 2 } }{ bc } +\frac { { \left( c+a \right) }^{ 2 } }{ ca } +\frac { { \left( a+b \right) }^{ 2 } }{ ab } &=\frac { { a }^{ 2 } }{ bc } +\frac { { b }^{ 2 } }{ ca } +\frac { { c }^{ 2 } }{ ab } \\ \\ &=\frac { { a }^{ 3 }+{ b }^{ 3 }+{ c }^{ 3 } }{ abc } \\ \\ &=\frac { 3abc }{ abc } = 3 \quad \quad (\color{#3D99F6}{\text{Because if } a + b + c = 0, \text{then } a^3 + b^3 + c^3 = 3abc}) \end{aligned}

Please explain why a 3 + b 3 + c 3 = 3 a b c a^3 + b^3 + c^3 = 3abc . Did I miss something?

Leon Oxley - 6 years, 10 months ago

Log in to reply

we have, ( a + b + c ) 3 = a 3 + b 3 + c 3 + 3 a 2 b + 3 a 2 c + 3 b 2 c + 3 b 2 a + 3 c 2 a + 3 c 2 a + 6 a b c . (a + b + c)^3 = a^3 + b^3 + c^3 + 3a^2b + 3a^2c + 3b^2c +3b^2a +3c^2a +3c^2a+6abc.
Since a + b + c = 0, it must be that 0 = a 3 + b 3 + c 3 3 a 3 3 b 3 3 c 3 + 6 a b c , 0 = a^3 + b^3 + c^3 - 3a^3 - 3b^3 -3c^3 + 6abc, which gives a 3 + b 3 + c 3 = 3 a b c a^3 + b^3 + c^3 = 3abc .

Arun Jp - 6 years, 8 months ago
Vishal S
Jan 14, 2015

Given

a+b+c=0---->(1)

From (1)

b+c=-a

c+a=-b

a+b=-c

Now

( b + c ) 2 b c \frac {(b+c)^{2}}{bc} + ( c + a ) 2 c a \frac {(c+a)^{2}}{ca} + ( a + b ) 2 a b \frac {(a+b)^{2}}{ab}

\Rightarrow ( a ) 2 b c \frac {(a)^{2}}{bc} + ( b ) 2 c a \frac {(b)^{2}}{ca} + ( c ) 2 c a \frac {(c)^{2}}{ca}

\Rightarrow a 4 b c + b 4 c a + c 4 a b ( a b c ) 2 \frac {a^{4}bc + b^{4}ca + c^{4}ab}{(abc)^{2}}

\Rightarrow abc( a 3 + b 3 + c 3 ( a b c ) 2 \frac {a^{3} + b^{3}+ c^{3}}{(abc)^{2}} )

\Rightarrow a 3 + b 3 + c 3 a b c \frac {a^{3} + b^{3}+ c^{3}}{abc} ---->(2)

When a + b + c=0 then a 3 a^{3} + b 3 b^{3} + c 3 c^{3} =3abc

By substituting a 3 a^{3} + b 3 b^{3} + c 3 c^{3} =3abc in (2), we get

3 a b c a b c \frac {3abc}{abc} =3

Therefore ( b + c ) 2 b c \frac {(b+c)^{2}}{bc} + ( c + a ) 2 c a \frac {(c+a)^{2}}{ca} + ( a + b ) 2 a b \frac {(a+b)^{2}}{ab} when a + b + c = 3 \boxed{3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...