Rooted away

Algebra Level 4

x x is a real number that satisfies the equation

x = 4 x 5 x + 5 x 6 x + 6 x 4 x . x = \sqrt{4-x}\sqrt{5-x} + \sqrt{5-x}\sqrt{6-x} + \sqrt{6-x}\sqrt{4-x}.

If x x can be expressed as a b \frac{a}{b} , where a a and b b are coprime positive integers, what is a + b a+b ?


The answer is 551.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

C Lim
Sep 29, 2013

Let a = 4 x , b = 5 x , c = 6 x a = \sqrt{4-x}, b = \sqrt{5-x}, c = \sqrt{6-x} . This gives x = a b + b c + c a x = ab + bc + ca . Since a 2 = 4 x a^2 = 4-x , we add a 2 a^2 to both sides to obtain:

4 = ( 4 x ) + x = a 2 + a b + b c + c a = ( a + b ) ( a + c ) . 4 = (4-x)+x = a^2 + ab + bc + ca = (a+b)(a+c).

Similarly, we have:

5 = ( b + c ) ( b + a ) , 6 = ( c + a ) ( c + b ) . 5 = (b+c)(b+a), 6 = (c+a)(c+b).

Multiplying these three equations together and taking the square root, we get ( a + b ) ( a + c ) ( b + c ) = 120 (a+b)(a+c)(b+c) = \sqrt{120} . And dividing this by each of the three equations, we get:

b + c = 120 4 , c + a = 120 5 , a + b = 120 6 . \begin{aligned} b+c &= \frac{\sqrt{120}} 4, \\ c+a &= \frac{\sqrt{120}} 5,\\ a+b &=\frac{\sqrt{120}}6.\end{aligned}

Now we add these three equations together and divide by two to obtain a + b + c = 37 120 120 a+b+c = \frac{37}{120}\sqrt{120} , then subtract this by the first equation to get

a = 7 120 120 x = 4 a 2 = 431 120 . a = \frac{7}{120}\sqrt{120} \implies x = 4-a^2 = \frac{431}{120}.

Moderator note:

Very nice indeed!

nice!

Zi Song Yeoh - 7 years, 8 months ago

cool!

Utsav Singhal - 7 years, 8 months ago

epic :)

Ayush Kumar - 7 years, 8 months ago

wow!

Rindell Mabunga - 7 years, 8 months ago

This is superb.

Jan J. - 7 years, 8 months ago

Killer method!!! Too good. Any references to similar problems, techniques? That'd be really helpful.

Parth Thakkar - 7 years, 8 months ago

Really nice manipulations.....

Nishant Sharma - 7 years, 8 months ago

Nicely Done !!

Gabriel Merces - 7 years, 8 months ago

x = 4 x 5 x + 5 x 6 x + 6 x 4 x x = \sqrt{4-x}\sqrt{5-x} + \sqrt{5-x}\sqrt{6-x} + \sqrt{6-x}\sqrt{4-x}

x 4 x 5 x = 5 x 6 x + 6 x 4 x x - \sqrt{4-x}\sqrt{5-x} = \sqrt{5-x}\sqrt{6-x} + \sqrt{6-x}\sqrt{4-x}

x 2 2 x 4 x 5 x + ( 4 x ) ( 5 x ) = ( 5 x ) ( 6 x ) + 2 ( 6 x ) 4 x 5 x + ( 6 x ) ( 4 x ) x^2 - 2x\sqrt{4-x}\sqrt{5-x} + (4-x)(5-x) = (5-x)(6-x) + 2(6-x)\sqrt{4-x}\sqrt{5-x} + (6-x)(4-x)

2 ( 6 x ) 4 x 5 x + 2 x 4 x 5 x = x 2 + ( 4 x ) ( 5 x ) ( 5 x ) ( 6 x ) ( 6 x ) ( 4 x ) 2(6-x)\sqrt{4-x}\sqrt{5-x} + 2x\sqrt{4-x}\sqrt{5-x} = x^2+ (4-x)(5-x) - (5-x)(6-x) - (6-x)(4-x)

6 4 x 5 x = 6 x 17 6\sqrt{4-x}\sqrt{5-x} = 6x - 17

36 ( 4 x ) ( 5 x ) = ( 6 x 17 ) 2 36(4-x)(5-x) = (6x - 17)^2

431 x 120 = 0 431x - 120 = 0

x = 431 120 < 4 x = \frac{431}{120} < 4

Hence a + b = 551 a + b = 551

Moderator note:

Nicely done! This solution is not as beautiful as the C.L.'s , but is very effective and straight to the point.

how do you go from line 4 to line 5?

Aradhya Kasera - 7 years, 8 months ago

Log in to reply

12 4 x 5 x 2 x 4 x 5 x + 2 x 4 x 5 x = x 2 + 20 9 x + x 2 30 + 11 x x 2 24 + 10 x x 2 12\sqrt{4-x}\sqrt{5-x} - 2x\sqrt{4-x}\sqrt{5-x} + 2x\sqrt{4-x}\sqrt{5-x} = x^2 + 20 - 9x + x^2 - 30 + 11x - x^2 - 24 + 10x - x^2

12 4 x 5 x = 12 x 34 12\sqrt{4-x}\sqrt{5-x} = 12x -34

6 4 x 5 x = 6 x 17 6\sqrt{4-x}\sqrt{5-x} = 6x - 17

Hope it helped!

Fariz Azmi Pratama - 7 years, 8 months ago
Shunping Xie
Sep 29, 2013

First substitute y = 5 x y=5-x .

We can then rewrite the equation as:

5 y + ( y ) = y + 1 ( y 1 + y ) + y ( y 1 + y ) 5-y+(y)=\sqrt{y+1}(\sqrt{y-1}+\sqrt{y})+\sqrt{y}(\sqrt{y-1}+\sqrt{y}) .

Simplify that to get ( y 1 + y ) ( y + 1 + y ) = 5 (\sqrt{y-1}+\sqrt{y})(\sqrt{y+1}+\sqrt{y})=5 .

Multiply both sides by ( y + 1 y ) (\sqrt{y+1}-\sqrt{y}) to get:

( y 1 + y ) = 5 ( y + 1 y ) (\sqrt{y-1}+\sqrt{y})=5(\sqrt{y+1}-\sqrt{y}) which is:

5 y + 1 6 y = y 1 5\sqrt{y+1}-6\sqrt{y}=\sqrt{y-1} .

Square both sides and simplify to get 30 y + 13 = 30 y + 1 y 30y+13=30\sqrt{y+1}\sqrt{y} .

Square both sides again and simplify to get 169 y 120 169y-120 so y = 169 120 y=\frac{169}{120} . Plug this value back in to check if it is extraneous and it is not. 5 x = y 5-x=y so x = 431 120 x=\frac{431}{120} which is less than four so it works. 431 + 120 = 551 431+120=551 .

169 120 y 169-120y

Ekky Arizaputra - 7 years, 8 months ago

Log in to reply

Whoops. That was a typo. Good catch.

Shunping Xie - 7 years, 8 months ago

It is easy to see that 0 x 4 0 \le x \le 4 .

Moreover, 0 < x < 4 0 < x < 4 .

Suppose that x = 2 + 2 cos θ x=2+2\cos\theta for some θ ( 0 , π ) \theta \in (0,\pi) .

Therefore,

2 + 2 cos θ = ( 2 2 cos θ ) ( 3 2 cos θ ) + ( 3 2 cos θ ) ( 4 2 cos θ ) + ( 4 2 cos θ ) ( 2 2 cos θ ) . 2+2\cos\theta = \sqrt{\left(2-2\cos\theta\right)\left(3-2\cos\theta\right)}+\sqrt{\left(3-2\cos\theta\right)\left(4-2\cos\theta\right)}+\sqrt{\left(4-2\cos\theta\right)\left(2-2\cos\theta\right)}.

Dividing by 4 yields

1 + cos θ 2 = ( 1 cos θ 2 ) ( 1 4 + 1 cos θ 2 ) + ( 1 4 + 1 cos θ 2 ) ( 1 2 + 1 cos θ 2 ) + ( 1 2 + 1 cos θ 2 ) ( 1 cos θ 2 ) . \frac{1+\cos\theta}{2} = \sqrt{\left(\frac{1-\cos\theta}{2}\right)\left(\frac{1}{4}+\frac{1-\cos\theta}{2}\right)}+\sqrt{\left(\frac{1}{4}+\frac{1-\cos\theta}{2}\right)\left(\frac{1}{2}+\frac{1-\cos\theta}{2}\right)}+\sqrt{\left(\frac{1}{2}+\frac{1-\cos\theta}{2}\right)\left(\frac{1-\cos\theta}{2}\right)}.

Use some trigonometric identities and get

cos 2 θ 2 = sin θ 2 1 4 + sin 2 θ 2 + ( 1 4 + sin 2 θ 2 ) ( 1 2 + sin 2 θ 2 ) + sin θ 2 1 2 + sin 2 θ 2 . \cos^2\frac{\theta}{2} = \sin\frac{\theta}{2} \sqrt{\frac{1}{4}+\sin^2\frac{\theta}{2}}+\sqrt{\left(\frac{1}{4}+\sin^2\frac{\theta}{2}\right)\left(\frac{1}{2}+\sin^2\frac{\theta}{2}\right)}+\sin\frac{\theta}{2}\sqrt{\frac{1}{2}+\sin^2\frac{\theta}{2}}.

Since sin θ 2 R + \sin\frac{\theta}{2} \in \mathbb{R}^{+} , suppose that sin θ 2 = tan α 2 \sin\frac{\theta}{2}=\frac{\tan\alpha}{2} for some α ( 0 , π 2 ) \alpha \in \left(0,\frac{\pi}{2}\right) .

Hence,

1 tan 2 α 4 = tan α 2 sec α 2 + sec α 2 1 2 + tan 2 α 4 + tan α 2 1 2 + tan 2 α 4 . 1-\frac{\tan^2\alpha}{4} = \frac{\tan\alpha}{2}\cdot\frac{\sec\alpha}{2}+\frac{\sec\alpha}{2}\sqrt{\frac{1}{2}+\frac{\tan^2\alpha}{4}}+\frac{\tan\alpha}{2}\sqrt{\frac{1}{2}+\frac{\tan^2\alpha}{4}}.

Which is

4 tan 2 α = tan α sec α + ( sec α + tan α ) 2 + tan 2 α . 4-\tan^2\alpha = \tan\alpha \sec\alpha+(\sec\alpha+\tan\alpha)\sqrt{2+\tan^2\alpha}.

Replace 4 4 by 4 ( sec 2 α tan 2 α ) 4(\sec^2\alpha-\tan^2\alpha) and get

4 sec 2 α sec α tan α 5 tan 2 α = ( sec α + tan α ) 2 + tan 2 α . 4\sec^2\alpha-\sec\alpha\tan\alpha-5\tan^2\alpha = (\sec\alpha+\tan\alpha)\sqrt{2+\tan^2\alpha}.

Or

( 4 sec α 5 tan α ) ( sec α + tan α ) = ( sec α + tan α ) 2 + tan 2 α . (4\sec\alpha-5\tan\alpha)(\sec\alpha+\tan\alpha) = (\sec\alpha+\tan\alpha)\sqrt{2+\tan^2\alpha}.

Since α ( 0 , π 2 ) \alpha \in \left(0,\frac{\pi}{2}\right) , sec α + tan α > 0 \sec\alpha+\tan\alpha >0 . Thus,

4 sec α 5 tan α = 2 + tan 2 α . 4\sec\alpha-5\tan\alpha = \sqrt{2+\tan^2\alpha}.

Squaring implies

16 sec 2 α 40 sec α tan α + 25 tan 2 α = 2 + tan 2 α . 16\sec^2\alpha-40\sec\alpha\tan\alpha+25\tan^2\alpha = 2+\tan^2\alpha.

Replace 2 2 by 2 ( sec 2 α tan 2 α ) 2(\sec^2\alpha-\tan^2\alpha) and get

14 sec 2 α 40 sec α tan α + 26 tan 2 α = 0. 14\sec^2\alpha-40\sec\alpha\tan\alpha+26\tan^2\alpha = 0.

Which is

7 sec 2 α 20 sec α tan α + 13 tan 2 α = 0. 7\sec^2\alpha-20\sec\alpha\tan\alpha+13\tan^2\alpha = 0.

Multiplying cos 2 α \cos^2\alpha and get

13 sin 2 α 20 sin α + 7 = 0. 13\sin^2\alpha-20\sin\alpha+7=0.

Or

( 13 sin α 7 ) ( sin α 1 ) = 0. (13\sin\alpha-7)(\sin\alpha-1)=0.

Since α ( 0 , π 2 ) \alpha \in \left(0,\frac{\pi}{2}\right) , sin α 1 < 0 \sin\alpha-1 <0 . Hence,

13 sin α 7 = 0. 13\sin\alpha-7=0.

Which is sin α = 7 13 \sin\alpha=\frac{7}{13} .

Therefore tan α = 7 120 \tan\alpha=\frac{7}{\sqrt{120}} .

Then sin θ 2 = tan α 2 = 7 480 \sin \frac{\theta}{2} = \frac{\tan\alpha}{2} = \frac{7}{\sqrt{480}} .

Consequently, cos θ = 1 2 sin 2 θ 2 = 191 240 \cos\theta=1-2\sin^2\frac{\theta}{2}=\frac{191}{240} .

Finally, x = 2 + 2 cos θ = 431 120 x=2+2\cos\theta=\frac{431}{120} .

Since gcd ( 431 , 120 ) = 1 \gcd(431,120)=1 , the answer of the equation is 431 + 120 = 551 431+120=551 .

I just give alternative solution using trigonometry. Is that cool?

Perathorn Pooksombat - 7 years, 8 months ago

Log in to reply

Nice! Very creative, Perathorn!

Noel Lo - 7 years, 8 months ago

by caculator

We have x = 4 x 5 x + 5 x 6 x + 6 x 4 x x=\sqrt{4-x}\sqrt{5-x}+\sqrt{5-x}\sqrt{6-x}+\sqrt{6-x}\sqrt{4-x} , reorder the equation to obtain: x = 5 x ( 4 x + 6 x ) + 4 x 6 x x=\sqrt{5-x}(\sqrt{4-x}+\sqrt{6-x})+\sqrt{4-x}\sqrt{6-x} .

Now, let t = 4 x 6 x t=\sqrt{4-x}\sqrt{6-x} to simplify and write less:

x = 5 x ( 4 x + 6 x ) + t x=\sqrt{5-x}(\sqrt{4-x}+\sqrt{6-x})+t

Let's perform some algebra:

x t = 5 x ( 4 x + 6 x ) x-t=\sqrt{5-x}(\sqrt{4-x}+\sqrt{6-x})

( x t ) 2 = ( 5 x ) ( 4 x + 6 x ) 2 (x-t)^{2}=(5-x)(\sqrt{4-x}+\sqrt{6-x})^{2}

x 2 2 x t + t 2 = ( 5 x ) ( 4 x + 2 t + 6 x ) x^{2}-2xt+t^{2}=(5-x)(4-x+2t+6-x) (observe that the term t t appeared again)

x 2 2 x t + t 2 = ( 5 x ) ( 10 2 x + 2 t ) x^{2}-2xt+t^{2}=(5-x)(10-2x+2t)

x 2 2 x t + t 2 = 50 10 x + 10 t 10 x + 2 x 2 2 x t x^{2}-2xt+t^{2}=50-10x+10t-10x+2x^{2}-2xt

Simplify the term t 2 t^{2} and cancel some terms:

x 2 + ( 4 x ) ( 6 x ) = 50 10 x + 10 t 10 x + 2 x 2 x^{2}+(4-x)(6-x)=50-10x+10t-10x+2x^{2}

x 2 + 24 10 x + x 2 = 50 10 x + 10 t 10 x + 2 x 2 x^{2}+24-10x+x^{2}=50-10x+10t-10x+2x^{2}

2 x 2 + 24 10 x = 50 10 x + 10 t 10 x + 2 x 2 2x^{2}+24-10x=50-10x+10t-10x+2x^{2}

24 = 50 10 x + 10 t 24=50-10x+10t

5 t = 5 x 13 5t=5x-13

25 t 2 = ( 5 x 13 ) 2 25t^{2}=(5x-13)^{2}

Simplify again the term t 2 t^{2} :

25 ( 4 x ) ( 6 x ) = 25 x 2 130 x + 169 25(4-x)(6-x)=25x^{2}-130x+169

25 x 2 250 x + 600 = 25 x 2 130 x + 169 25x^{2}-250x+600=25x^{2}-130x+169

600 169 = 250 x 130 x 600-169=250x-130x

431 = 120 x 431=120x

x = 431 120 x=\frac{431}{120}

Hence, a = 431 a=431 , b = 120 b=120 and a + b = 551 a+b=\boxed{551} .

Saurabh Mallik
Mar 28, 2014

If we solve the equation, we get:

x = 4 x 5 x + 5 x 6 x + 6 x 4 x x=\sqrt{4-x}\sqrt{5-x}+\sqrt{5-x}\sqrt{6-x}+\sqrt{6-x}\sqrt{4-x}

x = 431 120 x=\frac{431}{120}

So: a = 431 , b = 120 a=431, b=120 .

Thus, the answer is: a + b = 431 + 120 = 551 a+b = 431+120 = \boxed{551}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...