x is a real number that satisfies the equation
x = 4 − x 5 − x + 5 − x 6 − x + 6 − x 4 − x .
If x can be expressed as b a , where a and b are coprime positive integers, what is a + b ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Very nice indeed!
nice!
cool!
epic :)
wow!
This is superb.
Killer method!!! Too good. Any references to similar problems, techniques? That'd be really helpful.
Really nice manipulations.....
Nicely Done !!
x = 4 − x 5 − x + 5 − x 6 − x + 6 − x 4 − x
x − 4 − x 5 − x = 5 − x 6 − x + 6 − x 4 − x
x 2 − 2 x 4 − x 5 − x + ( 4 − x ) ( 5 − x ) = ( 5 − x ) ( 6 − x ) + 2 ( 6 − x ) 4 − x 5 − x + ( 6 − x ) ( 4 − x )
2 ( 6 − x ) 4 − x 5 − x + 2 x 4 − x 5 − x = x 2 + ( 4 − x ) ( 5 − x ) − ( 5 − x ) ( 6 − x ) − ( 6 − x ) ( 4 − x )
6 4 − x 5 − x = 6 x − 1 7
3 6 ( 4 − x ) ( 5 − x ) = ( 6 x − 1 7 ) 2
4 3 1 x − 1 2 0 = 0
x = 1 2 0 4 3 1 < 4
Hence a + b = 5 5 1
Nicely done! This solution is not as beautiful as the C.L.'s , but is very effective and straight to the point.
how do you go from line 4 to line 5?
Log in to reply
1 2 4 − x 5 − x − 2 x 4 − x 5 − x + 2 x 4 − x 5 − x = x 2 + 2 0 − 9 x + x 2 − 3 0 + 1 1 x − x 2 − 2 4 + 1 0 x − x 2
1 2 4 − x 5 − x = 1 2 x − 3 4
6 4 − x 5 − x = 6 x − 1 7
Hope it helped!
First substitute y = 5 − x .
We can then rewrite the equation as:
5 − y + ( y ) = y + 1 ( y − 1 + y ) + y ( y − 1 + y ) .
Simplify that to get ( y − 1 + y ) ( y + 1 + y ) = 5 .
Multiply both sides by ( y + 1 − y ) to get:
( y − 1 + y ) = 5 ( y + 1 − y ) which is:
5 y + 1 − 6 y = y − 1 .
Square both sides and simplify to get 3 0 y + 1 3 = 3 0 y + 1 y .
Square both sides again and simplify to get 1 6 9 y − 1 2 0 so y = 1 2 0 1 6 9 . Plug this value back in to check if it is extraneous and it is not. 5 − x = y so x = 1 2 0 4 3 1 which is less than four so it works. 4 3 1 + 1 2 0 = 5 5 1 .
1 6 9 − 1 2 0 y
It is easy to see that 0 ≤ x ≤ 4 .
Moreover, 0 < x < 4 .
Suppose that x = 2 + 2 cos θ for some θ ∈ ( 0 , π ) .
Therefore,
2 + 2 cos θ = ( 2 − 2 cos θ ) ( 3 − 2 cos θ ) + ( 3 − 2 cos θ ) ( 4 − 2 cos θ ) + ( 4 − 2 cos θ ) ( 2 − 2 cos θ ) .
Dividing by 4 yields
2 1 + cos θ = ( 2 1 − cos θ ) ( 4 1 + 2 1 − cos θ ) + ( 4 1 + 2 1 − cos θ ) ( 2 1 + 2 1 − cos θ ) + ( 2 1 + 2 1 − cos θ ) ( 2 1 − cos θ ) .
Use some trigonometric identities and get
cos 2 2 θ = sin 2 θ 4 1 + sin 2 2 θ + ( 4 1 + sin 2 2 θ ) ( 2 1 + sin 2 2 θ ) + sin 2 θ 2 1 + sin 2 2 θ .
Since sin 2 θ ∈ R + , suppose that sin 2 θ = 2 tan α for some α ∈ ( 0 , 2 π ) .
Hence,
1 − 4 tan 2 α = 2 tan α ⋅ 2 sec α + 2 sec α 2 1 + 4 tan 2 α + 2 tan α 2 1 + 4 tan 2 α .
Which is
4 − tan 2 α = tan α sec α + ( sec α + tan α ) 2 + tan 2 α .
Replace 4 by 4 ( sec 2 α − tan 2 α ) and get
4 sec 2 α − sec α tan α − 5 tan 2 α = ( sec α + tan α ) 2 + tan 2 α .
Or
( 4 sec α − 5 tan α ) ( sec α + tan α ) = ( sec α + tan α ) 2 + tan 2 α .
Since α ∈ ( 0 , 2 π ) , sec α + tan α > 0 . Thus,
4 sec α − 5 tan α = 2 + tan 2 α .
Squaring implies
1 6 sec 2 α − 4 0 sec α tan α + 2 5 tan 2 α = 2 + tan 2 α .
Replace 2 by 2 ( sec 2 α − tan 2 α ) and get
1 4 sec 2 α − 4 0 sec α tan α + 2 6 tan 2 α = 0 .
Which is
7 sec 2 α − 2 0 sec α tan α + 1 3 tan 2 α = 0 .
Multiplying cos 2 α and get
1 3 sin 2 α − 2 0 sin α + 7 = 0 .
Or
( 1 3 sin α − 7 ) ( sin α − 1 ) = 0 .
Since α ∈ ( 0 , 2 π ) , sin α − 1 < 0 . Hence,
1 3 sin α − 7 = 0 .
Which is sin α = 1 3 7 .
Therefore tan α = 1 2 0 7 .
Then sin 2 θ = 2 tan α = 4 8 0 7 .
Consequently, cos θ = 1 − 2 sin 2 2 θ = 2 4 0 1 9 1 .
Finally, x = 2 + 2 cos θ = 1 2 0 4 3 1 .
Since g cd ( 4 3 1 , 1 2 0 ) = 1 , the answer of the equation is 4 3 1 + 1 2 0 = 5 5 1 .
I just give alternative solution using trigonometry. Is that cool?
We have x = 4 − x 5 − x + 5 − x 6 − x + 6 − x 4 − x , reorder the equation to obtain: x = 5 − x ( 4 − x + 6 − x ) + 4 − x 6 − x .
Now, let t = 4 − x 6 − x to simplify and write less:
x = 5 − x ( 4 − x + 6 − x ) + t
Let's perform some algebra:
x − t = 5 − x ( 4 − x + 6 − x )
( x − t ) 2 = ( 5 − x ) ( 4 − x + 6 − x ) 2
x 2 − 2 x t + t 2 = ( 5 − x ) ( 4 − x + 2 t + 6 − x ) (observe that the term t appeared again)
x 2 − 2 x t + t 2 = ( 5 − x ) ( 1 0 − 2 x + 2 t )
x 2 − 2 x t + t 2 = 5 0 − 1 0 x + 1 0 t − 1 0 x + 2 x 2 − 2 x t
Simplify the term t 2 and cancel some terms:
x 2 + ( 4 − x ) ( 6 − x ) = 5 0 − 1 0 x + 1 0 t − 1 0 x + 2 x 2
x 2 + 2 4 − 1 0 x + x 2 = 5 0 − 1 0 x + 1 0 t − 1 0 x + 2 x 2
2 x 2 + 2 4 − 1 0 x = 5 0 − 1 0 x + 1 0 t − 1 0 x + 2 x 2
2 4 = 5 0 − 1 0 x + 1 0 t
5 t = 5 x − 1 3
2 5 t 2 = ( 5 x − 1 3 ) 2
Simplify again the term t 2 :
2 5 ( 4 − x ) ( 6 − x ) = 2 5 x 2 − 1 3 0 x + 1 6 9
2 5 x 2 − 2 5 0 x + 6 0 0 = 2 5 x 2 − 1 3 0 x + 1 6 9
6 0 0 − 1 6 9 = 2 5 0 x − 1 3 0 x
4 3 1 = 1 2 0 x
x = 1 2 0 4 3 1
Hence, a = 4 3 1 , b = 1 2 0 and a + b = 5 5 1 .
If we solve the equation, we get:
x = 4 − x 5 − x + 5 − x 6 − x + 6 − x 4 − x
x = 1 2 0 4 3 1
So: a = 4 3 1 , b = 1 2 0 .
Thus, the answer is: a + b = 4 3 1 + 1 2 0 = 5 5 1
Problem Loading...
Note Loading...
Set Loading...
Let a = 4 − x , b = 5 − x , c = 6 − x . This gives x = a b + b c + c a . Since a 2 = 4 − x , we add a 2 to both sides to obtain:
4 = ( 4 − x ) + x = a 2 + a b + b c + c a = ( a + b ) ( a + c ) .
Similarly, we have:
5 = ( b + c ) ( b + a ) , 6 = ( c + a ) ( c + b ) .
Multiplying these three equations together and taking the square root, we get ( a + b ) ( a + c ) ( b + c ) = 1 2 0 . And dividing this by each of the three equations, we get:
b + c c + a a + b = 4 1 2 0 , = 5 1 2 0 , = 6 1 2 0 .
Now we add these three equations together and divide by two to obtain a + b + c = 1 2 0 3 7 1 2 0 , then subtract this by the first equation to get
a = 1 2 0 7 1 2 0 ⟹ x = 4 − a 2 = 1 2 0 4 3 1 .