An algebraic exponent problem by Ad

Algebra Level 2

2 2 x + 1 9 2 x + 4 = 0 , x = ? \large 2^{2x+1} - 9 \cdot 2^x + 4 = 0 \quad,\quad x= \ ?

1,2 -2,-1 2,-1 1,-3 0 -2,1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rama Devi
May 14, 2015

By assuming 2^x as y,we get the equation as , 2y^2-9y+4=0. By factorising,we get the value of y as 1/2 ,4. Since y=2^x,the value of x is -1 ,2

Aquilino Madeira
Jul 10, 2015

2 ( 2 x + 1 ) 9 × 2 x + 4 = 0 2 × 2 2 x 9 × 2 x + 4 = 0 2 × ( 2 x ) 2 9 × 2 x + 4 = 0 2 x = 9 ± ( 9 ) 2 4 × 2 × 4 2 × 2 2 x = 4 2 x = 1 2 2 x = 2 2 2 x = 2 1 x = 2 x = 1 \begin{array}{l} {2^{(2x + 1)}} - 9 \times {2^x} + 4 = 0\\ \Leftrightarrow 2 \times {2^{2x}} - 9 \times {2^x} + 4 = 0\\ \Leftrightarrow 2 \times {\left( {{2^x}} \right)^2} - 9 \times {2^x} + 4 = 0\\ \Leftrightarrow {2^x} = \frac{{9 \pm \sqrt {{{( - 9)}^2} - 4 \times 2 \times 4} }}{{2 \times 2}}\\ \Leftrightarrow {2^x} = 4\;\; \vee \;\;{2^x} = \frac{1}{2}\\ \Leftrightarrow {2^x} = {2^2}\;\; \vee \;\;{2^x} = {2^{ - 1}}\\ \Leftrightarrow x = 2\;\; \vee \;\;x = - 1 \end{array}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...