Algebra Problem by Kevin Tran (2)

Algebra Level 3

x 8 + 4 x 6 = 3 x + 4 + 4 \large \left| x-8 \right| +\left| 4x-6 \right| =\left| 3x+4 \right| + 4

How many integers that satisfies the equation above?

Notation: |\cdot| denotes the absolute value function .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let f ( x ) = x 8 + 4 x 6 3 x + 4 4 f(x) = |x-8|+|4x-6|-|3x+4|-4 . We need to find integer solution for f ( x ) = 0 f(x) = 0 . Then we have:

f ( x ) = { x + 8 4 x + 6 ( 3 x 4 ) 4 = 14 2 x for x < 4 3 f ( x ) > 16 2 3 No solution x + 8 4 x + 6 ( 3 x + 4 ) 4 = 6 8 x for 4 3 x < 3 2 f ( 3 4 ) = 0 Not integer solution x + 8 + 4 x 6 ( 3 x + 4 ) 4 = 6 for 3 2 x < 8 f ( x ) = 6 No solution x 8 + 4 x 6 ( 3 x + 4 ) 4 = 2 x 22 for x 8 f ( 11 ) = 0 Integer solution f(x) = \begin{cases} -x+8 -4x+6-(-3x-4) - 4 = 14 - 2x & \text{for } x < - \frac 43 & \implies f(x) > 16\frac 23 & \color{#D61F06} \small \text{No solution} \\ -x+8 -4x+6-(3x+4) - 4 = 6 - 8x & \text{for } - \frac 43 \le x < \frac 32 & \implies f \left(\frac 34\right) = 0 & \color{#D61F06} \small \text{Not integer solution} \\ -x+8 +4x-6-(3x+4) - 4 = -6 & \text{for } \frac 32 \le x < 8 & \implies f(x) = -6 & \color{#D61F06} \small \text{No solution} \\ x-8 +4x-6-(3x+4) - 4 = 2x - 22 & \text{for } x \ge 8 & \implies f(11) = 0 & \color{#3D99F6} \small \text{Integer solution} \end{cases}

Therefore, there is only 1 \boxed{1} integer solution, when x = 11 x = 11 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...