How many integers that satisfies the equation above?
Notation: denotes the absolute value function .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let f ( x ) = ∣ x − 8 ∣ + ∣ 4 x − 6 ∣ − ∣ 3 x + 4 ∣ − 4 . We need to find integer solution for f ( x ) = 0 . Then we have:
f ( x ) = ⎩ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎧ − x + 8 − 4 x + 6 − ( − 3 x − 4 ) − 4 = 1 4 − 2 x − x + 8 − 4 x + 6 − ( 3 x + 4 ) − 4 = 6 − 8 x − x + 8 + 4 x − 6 − ( 3 x + 4 ) − 4 = − 6 x − 8 + 4 x − 6 − ( 3 x + 4 ) − 4 = 2 x − 2 2 for x < − 3 4 for − 3 4 ≤ x < 2 3 for 2 3 ≤ x < 8 for x ≥ 8 ⟹ f ( x ) > 1 6 3 2 ⟹ f ( 4 3 ) = 0 ⟹ f ( x ) = − 6 ⟹ f ( 1 1 ) = 0 No solution Not integer solution No solution Integer solution
Therefore, there is only 1 integer solution, when x = 1 1 .