Algebra Problem By Yahia El Haw

Algebra Level 4

( 1 + i ) + ( 1 + i ) 2 + ( 1 + i ) 3 + + ( 1 + i ) 100 \left(1 + i\right) + \left(1 + i\right)^2 + \left(1 + i\right)^3 + \dots + \left(1 + i\right)^{100}

The sum above is the form

( a b + 1 ) ( d + e i ) \left(a^b + 1\right)\left(d + ei\right)

where a a , b b , c c and d d are integers with a a being a prime number. Find a + b + 1 + d + e a + b + 1 + d + e .

Notation: i = 1 i = \sqrt{-1} is the imaginary unit .


This problem was originally posted by Yahia El Haw .


The answer is 53.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

S = ( 1 + i ) + ( 1 + i ) 2 + ( 1 + i ) 3 + . . . + ( 1 + i ) 100 = ( 1 + i ) ( ( 1 + i ) 100 1 1 + i 1 ) = ( 1 + i ) ( ( 1 + i ) 2 × 50 1 i ) = i ( 1 + i ) ( ( 2 i ) 50 1 i 2 ) = ( i + i 2 ) ( 2 50 i 50 1 i 2 ) = ( i 1 ) ( 2 50 1 1 ) = ( 2 50 + 1 ) ( 1 + i ) \begin{aligned} S & = (1+i)+(1+i)^2+(1+i)^3 + ...+(1+i)^{100} \\ & = (1+i) \left(\frac {(1+i)^{100}-1}{1+i-1} \right) \\ & = (1+i) \left(\frac {(1+i)^{2 \times 50}-1}i \right) \\ & = i(1+i) \left(\frac {(2i)^{50}-1}{i^2} \right) \\ & = (i+i^2) \left(\frac {2^{50}i^{50}-1}{i^2} \right) \\ & = (i-1) \left(\frac {-2^{50}-1}{-1} \right) \\ & = (2^{50} + 1)(-1+i) \end{aligned}

a + b + 1 + d + e = 2 + 50 + 1 1 + 1 = 53 \implies a + b + 1 + d + e = 2+50+1-1+1 = \boxed{53}

Michael Huang
Dec 4, 2016

Set z = ( 1 + i ) z = (1 + i) . Then, the sum can be expressed as z + z 2 + + z 100 = n = 1 100 z n = ( n = 0 100 z n ) 1 = z 101 1 z 1 1 = z ( z 100 1 ) z 1 \begin{array}{rl} z + z^2 + \cdots + z^{100} &= \sum\limits_{n = 1}^{100} z^n\\ &= \left(\sum\limits_{n = 0}^{100} z^n\right) - 1\\ &= \dfrac{z^{101} - 1}{z - 1} - 1\\ &= \dfrac{z\left(z^{100} - 1\right)}{z - 1} \end{array} Converting ( 1 + i ) (1 + i) in polar coordinates, z = 1 + i = 2 1 2 + 2 i 2 i = 2 ( 1 2 + i 2 ) = 2 ( cos ( π 4 ) + i sin ( π 4 ) ) \begin{array}{rl} z = 1 + i &= \sqrt{2} \cdot \dfrac{1}{\sqrt{2}} + \sqrt{2} \cdot \dfrac{i}{\sqrt{2}}i\\ &= \sqrt{2}\left(\dfrac{1}{\sqrt{2}} + \dfrac{i}{\sqrt{2}}\right)\\ &= \sqrt{2}\left(\cos\left(\dfrac{\pi}{4}\right) + i\sin\left(\dfrac{\pi}{4}\right)\right) \end{array} By DeMoivre's Theorem , z 100 = 2 100 ( cos ( π 4 ) + i sin ( π 4 ) ) 100 = 2 50 ( cos ( 100 π 4 ) + i sin ( 100 π 4 ) ) = 2 50 ( cos ( 25 π ) + i sin ( 25 π ) ) = 2 50 \begin{array}{rl} z^{100} &= \sqrt{2}^{100}\left(\cos\left(\dfrac{\pi}{4}\right) + i\sin\left(\dfrac{\pi}{4}\right)\right)^{100}\\ &= 2^{50}\left(\cos\left(\dfrac{100\pi}{4}\right) + i\sin\left(\dfrac{100\pi}{4}\right)\right)\\ &= 2^{50}\left(\cos\left(25\pi\right) + i\sin\left(25\pi\right)\right)\\ &= -2^{50} \end{array} Thus, z z 1 ( z 100 1 ) = 1 + i i ( 2 50 1 ) = ( 2 50 + 1 ) ( 1 + i i i i ) = ( 2 50 + 1 ) ( 1 i ) = ( 2 50 + 1 ) ( i 1 ) \begin{array}{rl} \dfrac{z}{z - 1}\left(z^{100} - 1\right) &= \dfrac{1 + i}{i}\left(-2^{50} - 1\right)\\ &= -\left(2^{50} + 1\right)\left(\dfrac{1 + i}{i} \cdot \dfrac{i}{i}\right)\\ &= -\left(2^{50} + 1\right)\left(1 - i\right)\\ &= \left(2^{50} + 1\right)\left(i - 1\right) \end{array} Comparing the above expression with the given form, we have a + b + 1 + d + e + f = 53 a + b + 1 + d + e + f = \boxed{53} .

I already tried Yahia's question yesterday, but couldn't translate it to get to one of his options. So when this one came along, I just type it out. But how do I go forward and get those numbers without the brackets?

Saya Suka - 4 years, 6 months ago

Log in to reply

Which problem are we talking about?

Christopher Boo - 4 years, 6 months ago

Log in to reply

The exact same question as this one, but Yahia gave multiple choices of some (ai+b) that I could not reach at all, being trapped in the brackets of (2^50+)(i-1) form.

Saya Suka - 4 years, 6 months ago

There is no f f , right? Anyway, I think adding an additional 1 is not necessary. It doesn't add value to the problem.

Christopher Boo - 4 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...