Algebra problem No.1

Algebra Level 3

Let x , y , z , t x, y, z, t be real numbers satisfy 2 x 3 y 5 z 7 t = 2520. 2^{x}3^{y}5^{z}7^{t} = 2520 .

Find the minimum value of x 2 + y 2 + z 2 + t 2 . x^{2}+y^{2}+z^{2}+t^{2} .


The answer is 0.1423006018.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Given that 2 x 3 y 5 z = 2520 x ln 2 + y ln 3 + z ln 5 + t ln 7 = ln 2520 \displaystyle 2^{x}3^{y}5^{z} = 2520 \implies x\ln2+y\ln3+z\ln5+t\ln7=\ln2520 .

By Cauchy-Schwarz inequality , we have:

( ln 2 2 + ln 2 3 + ln 2 5 + ln 2 7 ) ( x 2 + y 2 + z 2 + t 2 x ln 2 + y ln 3 + z ln 5 + t ln 7 ) 2 = ln 2 2520 (\displaystyle \ln^{2} 2 + \ln^{2} 3 + \ln^{2} 5 + \ln^{2} 7)(x^{2} +y^{2} +z^{2} +t^{2} \geq x\ln2+y\ln3+z\ln5+t\ln7)^{2} = \ln^{2} 2520

( x 2 + y 2 + z 2 + t 2 ) ln 2 2520 ln 2 2 + ln 2 3 + ln 2 5 + ln 2 7 7.606458148... \displaystyle ⟹ (x^{2} +y^{2} +z^{2} +t^{2}) \geq \frac{\ln^{2} 2520}{\ln^{2} 2 + \ln^{2} 3 + \ln^{2} 5 + \ln^{2} 7} \approx \boxed{7.606458148...} .

Equality occurs when:

x ln 2 = y ln 3 = z ln 5 = t ln 7 \displaystyle \frac {x}{\ln 2} = \frac {y}{\ln 3} = \frac {z}{\ln 5} = \frac {t}{\ln 7} .

Nice use of Cauchy-Schwarz. I think you're missing a t t term in your first line, by the way (otherwise I'm not sure what the relevance of log 30 \log 30 is there).

Chris Lewis - 9 months, 4 weeks ago

Sorry, I didn't notice that. Thanks! :)

Anh Khoa Nguyễn Ngọc - 9 months, 4 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...