Algebra Question by Mithil Shah # 1

Algebra Level 3

Find positive integers x , y , z x,y,z such that x < y < z x \lt y \lt z and

1 x 1 x y 1 x y z = 19 97 \dfrac{1}{x} - \dfrac{1}{xy} - \dfrac{1}{xyz} = \dfrac{19}{97}

Determine the value of x + y + z x+y+z .


The answer is 151.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 25, 2017

1 x 1 x y 1 x y z = 19 97 y z z 1 x y z = 19 97 \begin{aligned} \frac 1x - \frac 1{xy} - \frac 1{xyz} & = \frac {19}{97} \\ \frac {yz-z-1}{xyz} & = \frac {19}{97} \end{aligned}

Since 97 in the RHS is a prime, this means that one of x x , y y and z z must be 97 or its multiple.

Now consider the following:

y z z 1 x y z = 19 97 1 1 y 1 y z = 19 97 x \begin{aligned} \frac {yz-z-1}{xyz} & = \frac {19}{97} \\ 1 - \frac 1y - \frac 1{yz} & = \frac {19}{97}x \end{aligned}

Since the LHS < 1 < 1 , 1 x 5 \implies 1 \le x \le 5 .

Assuming z = 97 z=97 , then x < y < 97 x < y < 97 :

y z z 1 x y z = 19 97 97 y 97 1 = 19 x y ( 97 19 x ) y = 98 y = 98 97 19 x \begin{aligned} \frac {yz-z-1}{xyz} & = \frac {19}{97} \\ 97y - 97-1 & = 19xy \\ (97-19x)y & = 98 \\ \implies y & = \frac {98}{97-19x} \end{aligned}

And y = 49 y=49 , the only integral solution when x = 5 x=5 . Therefore, x + y + z = 5 + 49 + 97 = 151 x+y+z = 5+49+97=\boxed{151} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...