Algebra sequel

Algebra Level 4

If x + y + z = 1 x+y+z=1 , x 2 + y 2 + z 2 = 2 x^2+y^2+z^2=2 and x 3 + y 3 + z 3 = 3 x^3+y^3+z^3=3 , then x 4 + y 4 + z 4 = a b x^4+y^4+z^4=\dfrac{a}{b} for some coprime positive integers a a and b b . What is a × b = ? a\times b=\boxed{?}

For starters, try this first.


The answer is 150.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 28, 2017

Let S 1 = x + y + z S_1 = x+y+z , S 2 = x y + y z + z x S_2 = xy+yz+zx , S 3 = x y z S_3 = xyz and P n = x n + y n + z n P_n = x^n+y^n+z^n , where n n is a positive integer. Using Newton's sums method as follows:

P 1 = x + y + z = 1 P 2 = S 1 P 1 2 S 2 = ( 1 ) ( 1 ) 2 S 2 = 2 S 2 = 1 2 P 3 = S 1 P 2 S 2 P 1 + 3 S 3 = ( 1 ) ( 2 ) ( 1 2 ) ( 1 ) + 3 S 3 = 3 S 3 = 1 6 P 4 = S 1 P 3 S 2 P 2 + S 3 P 1 = ( 1 ) ( 3 ) ( 1 2 ) ( 2 ) + ( 1 6 ) ( 1 ) = 25 6 \begin{aligned} P_1 & = x+y+z = 1 \\ P_2 & = S_1P_1 - 2S_2 = (1)(1)-2S_2 = 2 & \implies S_2 = - \frac 12 \\ P_3 & = S_1P_2 - S_2P_1 + 3S_3 = (1)(2)-\left(-\frac 12\right)(1)+3S_3 = 3 & \implies S_3 = - \frac 16 \\ P_4 & = S_1P_3 - S_2P_2 + S_3P_1 = (1)(3)-\left(-\frac 12\right)(2)+ \left(\frac 16\right)(1) = \frac {25}6 \end{aligned}

a × b = 25 × 6 = 150 \implies a \times b = 25 \times 6 = \boxed{150}

Vu Vincent
Jul 13, 2017

( x + y + z ) 2 = x 2 + y 2 + z 2 + 2 ( x y + y z + x z ) (x+y+z)^2 = x^2 + y^2 + z^2 + 2(xy+yz+xz)

1 = 2 + 2 ( x y + y z + x z ) x y + y z + x z = 1 2 \Leftrightarrow 1 = 2+2(xy+yz+xz) \Rightarrow xy+yz+xz = -\frac{1}{2} \quad \boxed{*}

x 3 + y 3 + z 3 3 x y z = ( x + y + z ) ( x 2 + y 2 + z 2 ( x y + y z + z x ) x^3 + y^3 + z^3 -3xyz = (x+y+z)(x^2 + y^2 +z^2 -(xy + yz + zx)

From \boxed{*} , we have:

3 3 x y z = 1 ( 2 ( 1 2 ) ) x y z = 1 6 3-3xyz=1(2-(-\frac{1}{2})) \Rightarrow xyz = \frac{1}{6} \quad \boxed{**}

We can get x 4 + y 4 + z 4 x^4 + y^4 + z^4 by doing:

( x 3 + y 3 + z 3 ) ( x + y + z ) = x 4 + y 4 + z 4 + x y ( x 2 + y 2 ) + y z ( y 2 + z 2 ) + x z ( x 2 + z 2 ) (x^3+y^3+z^3)(x+y+z) = \boxed{x^4 + y^4 + z^4} + xy(x^2+y^2)+yz(y^2+z^2) +xz(x^2+z^2)

We need to add x y z 2 + y z x 2 + x z y 2 = x y z ( x + y + z ) = 1 6 xyz^2 + yzx^2+xzy^2 = xyz(x+y+z) = \frac{1}{6} , so that both side becomes:

( x 3 + y 3 + z 3 ) ( x + y + z ) + 1 6 = x 4 + y 4 + z 4 + x y ( x 2 + y 2 + z 2 ) + y z ( x 2 + y 2 + z 2 ) + x z ( x 2 + y 2 + z 2 ) (x^3+y^3+z^3)(x+y+z)+\frac{1}{6} = x^4 + y^4 + z^4 + xy(x^2+y^2+z^2)+yz(x^2+y^2+z^2) +xz(x^2+y^2+z^2)

( 3 ) ( 1 ) + 1 6 = x 4 + y 4 + z 4 + x y ( 2 ) + y z ( 2 ) + x z ( 2 ) (3)(1) + \frac{1}{6}= x^4 + y^4 + z^4 + xy(2)+yz(2) +xz(2)

19 6 = x 4 + y 4 + z 4 + 2 ( 1 2 ) \frac{19}{6}= x^4 + y^4 + z^4 + 2(-\frac{1}{2})

x 4 + y 4 + z 4 = 25 6 \ x^4 + y^4 + z^4 = \frac{25}{6} with 25 and 6 coprime, hence, the answer is 150 \boxed{150}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...