If x + y + z = 1 , x 2 + y 2 + z 2 = 2 and x 3 + y 3 + z 3 = 3 , then x 4 + y 4 + z 4 = b a for some coprime positive integers a and b . What is a × b = ?
For starters, try this first.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
( x + y + z ) 2 = x 2 + y 2 + z 2 + 2 ( x y + y z + x z )
⇔ 1 = 2 + 2 ( x y + y z + x z ) ⇒ x y + y z + x z = − 2 1 ∗
x 3 + y 3 + z 3 − 3 x y z = ( x + y + z ) ( x 2 + y 2 + z 2 − ( x y + y z + z x )
From ∗ , we have:
3 − 3 x y z = 1 ( 2 − ( − 2 1 ) ) ⇒ x y z = 6 1 ∗ ∗
We can get x 4 + y 4 + z 4 by doing:
( x 3 + y 3 + z 3 ) ( x + y + z ) = x 4 + y 4 + z 4 + x y ( x 2 + y 2 ) + y z ( y 2 + z 2 ) + x z ( x 2 + z 2 )
We need to add x y z 2 + y z x 2 + x z y 2 = x y z ( x + y + z ) = 6 1 , so that both side becomes:
( x 3 + y 3 + z 3 ) ( x + y + z ) + 6 1 = x 4 + y 4 + z 4 + x y ( x 2 + y 2 + z 2 ) + y z ( x 2 + y 2 + z 2 ) + x z ( x 2 + y 2 + z 2 )
( 3 ) ( 1 ) + 6 1 = x 4 + y 4 + z 4 + x y ( 2 ) + y z ( 2 ) + x z ( 2 )
6 1 9 = x 4 + y 4 + z 4 + 2 ( − 2 1 )
x 4 + y 4 + z 4 = 6 2 5 with 25 and 6 coprime, hence, the answer is 1 5 0
Problem Loading...
Note Loading...
Set Loading...
Let S 1 = x + y + z , S 2 = x y + y z + z x , S 3 = x y z and P n = x n + y n + z n , where n is a positive integer. Using Newton's sums method as follows:
P 1 P 2 P 3 P 4 = x + y + z = 1 = S 1 P 1 − 2 S 2 = ( 1 ) ( 1 ) − 2 S 2 = 2 = S 1 P 2 − S 2 P 1 + 3 S 3 = ( 1 ) ( 2 ) − ( − 2 1 ) ( 1 ) + 3 S 3 = 3 = S 1 P 3 − S 2 P 2 + S 3 P 1 = ( 1 ) ( 3 ) − ( − 2 1 ) ( 2 ) + ( 6 1 ) ( 1 ) = 6 2 5 ⟹ S 2 = − 2 1 ⟹ S 3 = − 6 1
⟹ a × b = 2 5 × 6 = 1 5 0