Algebra + Trig = fun!

Geometry Level 4

2 sin 3 ( x ) 3 sin ( x ) = 3 sin ( 2 x ) 2 2\sin^3 (x) - 3\sin (x) = -\dfrac{3\sin (2x)}2

Using the above equation, determine the sum of distinct solutions for x x in the range 0 x 2 π 0≤x≤2\pi . If the solution is in the form a π a\pi , where a a is an integer, determine the value of a a .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

2 sin 3 x 3 sin x = 3 sin ( 2 x ) 2 Note that sin ( 2 x ) = 2 sin x cos x 2 sin 3 x 3 sin x = 6 sin x cos x 2 Rearranging 2 sin 3 x 3 sin x + 3 sin x cos x = 0 sin x ( 2 sin 2 x 3 + 3 cos x ) = 0 Since sin 2 x = 1 cos 2 x sin x ( 1 2 cos 2 x + 3 cos x ) = 0 Multiply throughout by 1 sin x ( 2 cos 2 x 3 cos x + 1 ) = 0 sin x ( cos x 1 ) ( 2 cos x 1 ) = 0 \begin{aligned} 2 \sin^3 x - 3 \sin x & = - \frac {\color{#3D99F6}3\sin (2x)}2 & \small \color{#3D99F6} \text{Note that }\sin (2x) = 2\sin x \cos x \\ 2 \sin^3 x - 3 \sin x & = - \frac {\color{#3D99F6}6\sin x\cos x}2 & \small \color{#3D99F6} \text{Rearranging} \\ 2 \sin^3 x - 3 \sin x + 3\sin x\cos x & = 0 \\ \sin x (2{\color{#3D99F6}\sin^2 x} - 3 + 3\cos x) & = 0 & \small \color{#3D99F6} \text{Since }\sin^2 x = 1 - \cos^2 x \\ \sin x (-1 - 2\cos^2 x + 3\cos x) & = 0 & \small \color{#3D99F6} \text{Multiply throughout by }-1 \\ \sin x (2\cos^2 x - 3\cos x +1) & = 0 \\ \sin x (\cos x - 1)(2\cos x - 1) & = 0 \end{aligned}

{ sin x = 0 x = 0 , π , 2 π cos x = 1 0 , 2 π cos x = 1 2 π 3 , 5 π 3 \implies \begin{cases} \sin x = 0 & \implies x = 0, \pi, 2 \pi \\ \cos x = 1 & \implies 0, 2\pi \\ \cos x = \dfrac 12 & \implies \dfrac \pi 3, \dfrac {5\pi}3 \end{cases}

Therefore, the sum of all distinct solutions is 0 + π 3 + π + 5 π 3 + 2 π = 5 π 0 + \dfrac \pi 3 + \pi + \dfrac {5\pi}3 + 2\pi = 5\pi a = 5 \implies a = \boxed 5 .

Yashas Ravi
Nov 1, 2018

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...