Algebra under the Calculus

Calculus Level 3

Simplify ln ( 1 2 ! 1 3 ! + 1 4 ! 1 5 ! + ) \ln \left(\frac 1{2!} - \frac 1{3!} + \frac 1{4!} - \frac 1{5!} + \cdots \right)


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Paul Ryan Longhas
Feb 19, 2015

By Maclaurin Series for e x e^x e 1 = ( 1 / 2 ! ) ( 1 / 3 ! ) + ( 1 / 4 ! ) . . . e^{-1} = (1/2!)-(1/3!)+(1/4!)... Hence, l n e 1 ln e^{-1} = > 1 => -1

Should this be a level 4 problem? I think not.

Prasun Biswas - 6 years, 3 months ago
Chew-Seong Cheong
Sep 13, 2018

Note that:

e x = 1 + x 1 ! + x 2 2 ! + x 3 3 ! + x 4 4 ! + x 5 5 ! + Putting x = 1 e 1 = 1 1 + 1 2 ! 1 3 ! + 1 4 ! x 5 5 ! + \begin{aligned} e^x & = 1 + \frac x{1!} + \frac {x^2}{2!} + \frac {x^3}{3!} + \frac {x^4}{4!} + \frac {x^5}{5!} + \cdots & \small \color{#3D99F6} \text{Putting }x=-1 \\ \implies e^{-1} & = 1 - 1 + \frac 1{2!} - \frac 1{3!} + \frac 1{4!} - \frac {x^5}{5!} + \cdots \end{aligned}

Therefore, ln ( 1 2 ! 1 3 ! + 1 4 ! x 5 5 ! + ) = ln ( e 1 ) = 1 \displaystyle \ln \left(\frac 1{2!} - \frac 1{3!} + \frac 1{4!} - \frac {x^5}{5!} + \cdots\right) = \ln \left(e^{-1}\right) = \boxed{-1} .

Fox To-ong
Mar 24, 2015

using maclaurin series for e^x

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...