Given that and are real numbers satisfying and , determine the maximum value of .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Sorry, something was wrong with my solution so I had to repost the whole thing
First, x − y − 1 ( z + 1 ) = y z 2 + 2 y z − 2 z 2 − 4 z ⟺ x = y z 2 + 2 y z − 2 z 2 − 4 z + y − 1 ( z + 1 )
= ( 2 − y ) ( − z 2 − 2 z ) + y − 1 ( z + 1 )
= 2 − y . − z 2 − 2 z + y − 1 ( z + 1 )
= 1 − ( y − 1 ) . 1 − ( z + 1 ) 2 + y − 1 ( z + 1 )
1 ≤ y ≤ 2 ⟹ 0 ≤ y − 1 ≤ 1 . Let y − 1 = sin B ; 1 − ( y − 1 ) = cos B with B ∈ [ 0 ; 9 0 ∘ ] .
By the same way, let z + 1 = cos C ; 1 − ( z + 1 ) 2 = sin C .
⟹ x = sin B cos C + cos B sin C = sin ( B + C )
1 ≤ y ≤ 2 ⟹ P = x 2 + 7 y − z 2 − 2 z
= x 2 + 2 4 7 y − z 2 − 2 z ≤ x 2 + y + 4 7 − z 2 − 2 z
(the equality holds when y = 4 7 )
= x 2 + [ 1 − ( z + 1 ) 2 ] + y − 1 + 4 1 1
= sin 2 ( B + C ) + sin 2 B + sin 2 C + 4 1 1
= sin 2 ( B + C ) + 1 − 2 1 ( cos 2 B + cos 2 C ) + 4 1 1
= 2 − cos 2 ( B + C ) − cos ( B + C ) cos ( B − C ) + 4 1 1
= 5 − ( cos ( B + C ) + 2 1 cos ( B − C ) ) 2 − 4 1 sin 2 ( B − C ) ≤ 5
The equality holds when
⎩ ⎨ ⎧ sin 2 ( B − C ) = 0 cos ( B + C ) + 2 1 cos ( B − C ) = 0 ⟺ ⎩ ⎪ ⎨ ⎪ ⎧ x = 2 3 y = 4 7 z = − 2 1
To sum up, the maximum of P is 5 .