Algebra vs. Trigonometry

Algebra Level 5

P = x 2 + 7 y z 2 2 z \large P=x^{2}+\sqrt{7y}-z^2-2z

Given that x , y x,y and z z are real numbers satisfying x y 1 ( z + 1 ) = y z 2 + 2 y z 2 z 2 4 z x-\sqrt{y-1}(z+1)=\sqrt{yz^2+2yz-2z^2-4z} and y 2 y\le2 , determine the maximum value of P P .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Leah Jurgens
Apr 1, 2016

Sorry, something was wrong with my solution so I had to repost the whole thing

First, x y 1 ( z + 1 ) = y z 2 + 2 y z 2 z 2 4 z x = y z 2 + 2 y z 2 z 2 4 z + y 1 ( z + 1 ) x-\sqrt{y-1}(z+1)=\sqrt{yz^2+2yz-2z^2-4z}\iff x=\sqrt{yz^2+2yz-2z^2-4z}+\sqrt{y-1}(z+1)

= ( 2 y ) ( z 2 2 z ) + y 1 ( z + 1 ) =\sqrt{(2-y)(-z^2-2z)}+\sqrt{y-1}(z+1)

= 2 y . z 2 2 z + y 1 ( z + 1 ) =\sqrt{2-y}.\sqrt{-z^2-2z}+\sqrt{y-1}(z+1)

= 1 ( y 1 ) . 1 ( z + 1 ) 2 + y 1 ( z + 1 ) =\sqrt{1-(y-1)}.\sqrt{1-(z+1)^2}+\sqrt{y-1}(z+1)

1 y 2 0 y 1 1 1\le y\le 2 \implies 0\le \sqrt{y-1} \le 1 . Let y 1 = sin B ; 1 ( y 1 ) = cos B \sqrt{y-1}=\sin B;\sqrt{1-(y-1)}=\cos B with B [ 0 ; 90 ] B \in [0;90\circ] .

By the same way, let z + 1 = cos C ; 1 ( z + 1 ) 2 = sin C z+1=\cos C;\sqrt{1-(z+1)^2}=\sin C .

x = sin B cos C + cos B sin C = sin ( B + C ) \implies x=\sin B\cos C+\cos B\sin C=\sin(B+C)

1 y 2 P = x 2 + 7 y z 2 2 z 1\le y\le 2 \implies P=x^{2}+\sqrt{7y}-z^2-2z

= x 2 + 2 7 4 y z 2 2 z x 2 + y + 7 4 z 2 2 z =x^{2}+2\sqrt{\frac{7}{4}y}-z^2-2z \le x^2+y+\frac{7}{4}-z^2-2z

(the equality holds when y = 7 4 y=\frac{7}{4} )

= x 2 + [ 1 ( z + 1 ) 2 ] + y 1 + 11 4 =x^2+[1-(z+1)^2]+y-1+\frac{11}{4}

= sin 2 ( B + C ) + sin 2 B + sin 2 C + 11 4 =\sin^2(B+C)+\sin^2B+\sin^2C+\frac{11}{4}

= sin 2 ( B + C ) + 1 1 2 ( cos 2 B + cos 2 C ) + 11 4 =\sin^2(B+C)+1-\dfrac{1}{2}(\cos2B+\cos2C)+\frac{11}{4}

= 2 cos 2 ( B + C ) cos ( B + C ) cos ( B C ) + 11 4 =2-\cos^2(B+C)-\cos(B+C)\cos(B-C)+\frac{11}{4}

= 5 ( cos ( B + C ) + 1 2 cos ( B C ) ) 2 1 4 sin 2 ( B C ) 5 =5-(\cos(B+C)+\frac{1}{2}\cos(B-C))^2-\frac{1}{4}\sin^2(B-C) \le 5

The equality holds when

{ sin 2 ( B C ) = 0 cos ( B + C ) + 1 2 cos ( B C ) = 0 \begin{aligned} \begin{cases} \sin^2(B-C) = 0 \\ \cos(B+C)+\dfrac{1}{2}\cos(B-C) = 0 \end{cases} \end{aligned} { x = 3 2 y = 7 4 z = 1 2 \iff \begin{aligned} \begin{cases} x = \frac{\sqrt{3}}{2} \\ y = \frac{7}{4} \\ z= -\frac{1}{2} \end{cases} \end{aligned}

To sum up, the maximum of P P is 5 \boxed{5} .

Could you please explain how did you jumped from second last step to last step please ?

Anurag Pandey - 3 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...