ALgebra#1

Algebra Level 2

If a b + b c + c a = 15 ab+bc+ca=15 , a 2 b 2 + b 2 c 2 + c 2 a 2 = 19 a^2b^2+b^2c^2+c^2a^2=19 , and a 4 b 4 + b 4 c 4 + c 4 a 4 = 39 a^4b^4+b^4c^4+c^4a^4=39 , find 30 a 2 b 2 c 2 30a^2b^2c^2 .


The answer is 10448.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

X X
Jul 21, 2018

Let a b = x , b c = y , c a = z ab=x,bc=y,ca=z

x + y + z = 15 , x 2 + y 2 + z 2 = 19 , x 4 + y 4 + z 4 = 39 {\color{#D61F06}x+y+z}=15,{\color{#3D99F6}x^2+y^2+z^2}=19,{\color{#EC7300}x^4+y^4+z^4}=39 ,then 30 x y z = ? 30{\color{#624F41}xyz}=?

1 5 2 = ( x + y + z ) 2 = x 2 + y 2 + z 2 + 2 ( x y + y z + z x ) = 19 + 2 ( x y + y z + z x ) 15^2=({\color{#D61F06}x+y+z})^2={\color{#3D99F6}x^2+y^2+z^2}+2({\color{#20A900}xy+yz+zx})=19+2({\color{#20A900}xy+yz+zx})

So x y + y z + z x = 103 {\color{#20A900}xy+yz+zx}=103

1 9 2 = ( x 2 + y 2 + z 2 ) 2 = x 4 + y 4 + z 4 + 2 ( x 2 y 2 + y 2 z 2 + z 2 x 2 ) = 39 + 2 ( x 2 y 2 + y 2 z 2 + z 2 x 2 ) 19^2=({\color{#3D99F6}x^2+y^2+z^2})^2={\color{#EC7300}x^4+y^4+z^4}+2({\color{#69047E}x^2y^2+y^2z^2+z^2x^2})=39+2({\color{#69047E}x^2y^2+y^2z^2+z^2x^2})

So x 2 y 2 + y 2 z 2 + z 2 x 2 = 161 {\color{#69047E}x^2y^2+y^2z^2+z^2x^2}=161

10 3 2 = ( x y + y z + z x ) 2 = x 2 y 2 + y 2 z 2 + z 2 x 2 + 2 ( x 2 y z + x y 2 z + x y z 2 ) = 161 + 2 x y z ( x + y + z ) = 161 + 30 x y z 103^2=({\color{#20A900}xy+yz+zx})^2={\color{#69047E}x^2y^2+y^2z^2+z^2x^2}+2(x^2yz+xy^2z+xyz^2)=161+2{\color{#624F41}xyz}({\color{#D61F06}x+y+z})=161+30{\color{#624F41}xyz}

So 30 x y z = 10448 30{\color{#624F41}xyz}=10448

Chew-Seong Cheong
Jul 22, 2018

Note that:

( a 2 b 2 + b 2 c 2 + c 2 a 2 ) 2 = a 4 b 4 + b 4 c 4 + c 4 a 4 + 2 ( a 2 b 4 c 2 + a 2 b 2 c 4 + a 4 b 2 c 2 ) Given a 2 b 2 + b 2 c 2 + c 2 a 2 = 19 19 2 = 39 + 2 a 2 b 2 c 2 ( a 2 + b 2 + c 2 ) and a 4 b 4 + b 4 c 4 + c 4 a 4 = 39 a 2 b 2 c 2 ( a 2 + b 2 + c 2 ) = 161 \begin{aligned} ({\color{#3D99F6}a^2b^2+b^2c^2+c^2a^2})^2 & = {\color{#D61F06}a^4b^4 + b^4c^4+c^4a^4} + 2(a^2b^4c^2+a^2b^2c^4+a^4b^2c^2) & \small \color{#3D99F6} \text{Given }a^2b^2+b^2c^2+c^2a^2 = 19 \\ {\color{#3D99F6}19}^2 & = {\color{#D61F06}39} + 2a^2b^2c^2(a^2+b^2+c^2) & \small \color{#D61F06} \text{and }a^4b^4 + b^4c^4+c^4a^4 = 39 \\ \implies a^2b^2c^2(a^2+b^2+c^2) & = 161 \end{aligned}

And that:

( a b + b c + c a ) 2 = a 2 b 2 + b 2 c 2 + c 2 a 2 + 2 ( a b 2 c + a b c 2 + a 2 b c ) Given a b + b c + c a = 15 15 2 = 19 + 2 a b c ( a + b + c ) and a 2 b 2 + b 2 c 2 + c 2 a 2 = 19 a b c ( a + b + c ) = 103 Squaring both sides a 2 b 2 c 2 ( a 2 + b 2 + c 2 + 2 ( a b + b c + c a ) ) = 10609 a 2 b 2 c 2 ( a 2 + b 2 + c 2 + 2 ( 15 ) ) = 10609 a 2 b 2 c 2 ( a 2 + b 2 + c 2 ) + 30 a 2 b 2 c 2 = 10609 Note that a 2 b 2 c 2 ( a 2 + b 2 + c 2 ) = 161 161 + 30 a 2 b 2 c 2 = 10609 30 a 2 b 2 c 2 = 10609 161 = 10448 \begin{aligned} ({\color{#D61F06}ab+bc+ca})^2 & = {\color{#3D99F6}a^2b^2 + b^2c^2+c^2a^2} + 2(ab^2c+abc^2+a^2bc) & \small \color{#D61F06} \text{Given }ab+bc+ca = 15 \\ {\color{#D61F06}15}^2 & = {\color{#3D99F6}19} + 2abc(a+b+c) & \small \color{#3D99F6} \text{and }a^2b^2 + b^2c^2+c^2a^2 = 19 \\ \implies abc(a+b+c) & = 103 & \small \color{#3D99F6} \text{Squaring both sides} \\ a^2b^2c^2(a^2+b^2+c^2 + 2({\color{#D61F06}ab+bc+ca})) & = 10609 \\ a^2b^2c^2(a^2+b^2+c^2 + 2({\color{#D61F06}15})) & = 10609 \\ {\color{#3D99F6}a^2b^2c^2(a^2+b^2+c^2)} + 30a^2b^2c^2 & = 10609 & \small \color{#3D99F6} \text{Note that }a^2b^2c^2(a^2+b^2+c^2) = 161 \\ {\color{#3D99F6}161} + 30a^2b^2c^2 & = 10609 \\ \implies 30a^2b^2c^2 & = 10609 - 161 = \boxed{10448} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...