The Position of the 2 Matters

Geometry Level 4

21 sin 2 x + 10 sin ( 2 x ) \large 21\sin^2x+10\sin(2x)

Find the maximum possible value that the above expression can hold, as x x ranges over all real values (radians).

Bonus: Attempt this problem with minimal usage of trigonometric identities.


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Mar 25, 2017

Use sin 2 x = 1 cos 2 x 2 \sin^2 x=\frac{1-\cos 2x}2 so that expression is:

21 2 + 10 sin 2 x 21 cos 2 x 2 \frac{21}2+\color{#D61F06}{10\sin 2x-\frac{21\cos 2x}2 }

21 2 + 29 2 [ sin ( 2 x α ) ] ( α = tan 1 ( 21 / 20 ) \frac{21}2+\color{#D61F06}{\frac{29}2\left[\sin \left(2x-\alpha\right) \right]}~~\small{(\alpha=\tan^{-1}(21/20)}

Max value of red expression is 29 2 \frac{29}2 when 2 x α 2x-\alpha takes values ( 4 m + 1 ) π 2 (4m+1)\frac{\pi}2 for integral m. Hence max value of whole expression is 21 + 29 2 = 25 \frac{21+29}2=\boxed{25} .

Joshua Chin
Mar 24, 2017

21 sin 2 x + 10 sin ( 2 x ) 21\sin^2x+10\sin(2x)

= 21 sin 2 x + 20 sin x cos x 21\sin^2x+20\sin x\cos x

= 21 sin 2 x + 4 sin 2 x + 20 sin x cos x + 4 cos 2 x 4 21\sin^2x+4\sin^2x+20\sin x\cos x+4\cos^2x-4

= 25 sin 2 x + 20 sin x cos x + 4 cos 2 x 4 25\sin^2x+20\sin x\cos x+4\cos^2x-4

= ( 5 sin x + 2 cos x ) 2 4 (5\sin x+2\cos x)^2-4

Now, we need to find the maximum possible value of ( 5 sin x + 2 cos x ) 2 (5\sin x+2\cos x)^2 .

By Cauchy-Schwarz Inequality,

( 25 + 4 ) ( sin 2 x + cos 2 x ) ( 5 sin x + 2 cos x ) 2 (25+4)(\sin^2x+\cos^2x)\geq(5\sin x+2\cos x)^2

( 5 sin x + 2 cos x ) 2 29 (5\sin x+2\cos x)^2\leq 29

Hence, the maximum possible value of 21 sin 2 x + 10 sin ( 2 x ) 21\sin^2x+10\sin(2x) is 29 4 = 25 29-4=25

Checking for the equality case, the equality holds when

5 sin x = 2 cos x \frac{5}{\sin x}=\frac{2}{\cos x}

This resolves to tan x = 5 2 \tan x = \frac{5}{2} , which can be achieved when x x is real.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...