Algebraic Manipulation

Algebra Level 3

If m 1 m = 1 m-\dfrac{1}{m}=1 , find m 8 + 1 m 8 m^{8}+\dfrac{1}{m^{8}} .


The answer is 47.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

m 1 m = 1 ( m 1 m ) 2 = 1 2 m 2 2 + 1 m 2 = 1 m 2 + 1 m 2 = 3 ( m 2 + 1 m 2 ) 2 = 3 2 m 4 + 2 + 1 m 4 = 9 m 4 + 1 m 4 = 7 ( m 4 + 1 m 4 ) 2 = 7 2 m 8 + 2 + 1 m 8 = 49 m 8 + 1 m 8 = 47 \begin{aligned} m - \frac 1m & = 1 \\ \left(m - \frac 1m\right)^2 & = 1^2 \\ m^2 -2 + \frac 1{m^2} & = 1 \\ m^2 + \frac 1{m^2} & = 3 \\ \left(m^2 + \frac 1{m^2}\right)^2 & = 3^2 \\ m^4 +2 + \frac 1{m^4} & = 9 \\ m^4 + \frac 1{m^4} & = 7 \\ \left(m^4 + \frac 1{m^4}\right)^2 & = 7^2 \\ m^8 +2 + \frac 1{m^8} & = 49 \\ m^8 + \frac 1{m^8} & = \boxed{47} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...