Adding another reciprocal

Algebra Level 4

Given that x y z = 1 xyz=1 where x , y , z x,y,z are positive real numbers and that x + 1 z = 5 x+\dfrac{1}{z}=5 , y + 1 x = 29 y+\dfrac{1}{x}=29 and z + 1 y = m n z+\dfrac{1}{y}=\dfrac{m}{n} , where m m and n n are coprime positive integers. Compute m + n m+n .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

8 solutions

Jason Chrysoprase
Dec 15, 2016

I don't know is there an easier method to find z + 1 y z + \frac{1}{y} , but this below is my method x + 1 z = 5 x z + 1 = 5 z 1 = z ( 5 x ) x y z = z ( 5 x ) y = 5 x 1 \begin{aligned} \large x + \frac{1}{z} & \large = 5 \\ \large xz+ 1 & \large = 5z \\ \large 1 & \large = z{\left(5-x \right)} \\ \large xyz & \large = z{\left(5-x \right)} \\ \large \therefore y& \large = \frac{5}{x} - 1 \\ \end{aligned}

Putting it into the third equation gives us 5 x 1 + 1 x = 29 6 x = 30 x = 1 5 \begin{aligned} \large \frac{5}{x} - 1 + \frac{1}{x} = 29 \\ \large \frac{6}{x} = 30 \\ \large \therefore x = \frac{1}{5} \\ \end{aligned}

Substitute x x into all equations gives us y = 24 , z = 5 24 y = 24, z=\frac{5}{24}

Hence, z + 1 y = 5 24 + 1 24 = 1 4 z + \frac{1}{y} = \frac{5}{24}+ \frac{1}{24} = \frac{1}{4}

So m + n = 1 + 4 = 5 m + n = 1 + 4 = 5

William Isoroku
Dec 15, 2016

By rearranging the equations we get:

x + x y = x ( y + 1 ) = 5 x+xy=x(y+1)=5

y + y z = y ( z + 1 ) = 29 y+yz=y(z+1)=29

z + z x = z ( x + 1 ) = m n z+zx=z(x+1)=\frac{m}{n}

Multiplying the equations:

x y z ( x + 1 ) ( y + 1 ) ( z + 1 ) = ( 5 ) ( 29 ) ( m n ) xyz(x+1)(y+1)(z+1)=(5)(29)(\frac{m}{n})

Expanding:

x y z ( x y z + x y + x z + y z + x + y + z + 1 ) = ( 5 ) ( 29 ) ( m n ) = 145 ( m n ) xyz(xyz+xy+xz+yz+x+y+z+1)=(5)(29)(\frac{m}{n})=145(\frac{m}{n})

Substitute x y z = 1 xyz=1 as well as x y = 1 z , x z = 1 y , y z = 1 x xy=\frac{1}{z}, xz=\frac{1}{y}, yz=\frac{1}{x} :

1 ( 1 + ( x + 1 z ) + ( y + 1 x ) + ( z + 1 y ) + 1 ) = 145 ( m n ) 1(1+(x+\frac { 1 }{ z } )+(y+\frac { 1 }{ x } )+(z+\frac { 1 }{ y } )+1)=145(\frac { m }{ n } )

1 + 5 + 29 + m n + 1 = 145 ( m n ) 1+5+29+\frac { m }{ n } +1=145(\frac { m }{ n } )

Solving for m n \frac{m}{n} yields m n = 1 4 \frac{m}{n}=\frac{1}{4} . So 1 + 4 = 5 1+4=5

Chew-Seong Cheong
Dec 20, 2016

{ x + 1 z = 5 . . . ( 1 ) y + 1 x = 29 . . . ( 2 ) \begin{cases} x + \dfrac 1z = 5 & ...(1) \\ y + \dfrac 1x = 29 & ...(2) \end{cases}

( 1 ) × y z : x y z + y z z = 5 y z 1 + y = 5 y z Divide both sides by y . 1 y + 1 = 5 z 1 y = 5 z 1 Both sides add z . z + 1 y = 6 z 1 . . . ( 3 ) \begin{aligned} (1)\times yz: \quad xyz + \frac {yz}z & = 5yz \\ 1 + y & = 5yz & \small \color{#3D99F6} \text{Divide both sides by }y. \\ \frac 1y + 1 & = 5z \\ \frac 1y & = 5z - 1 & \small \color{#3D99F6} \text{Both sides add }z. \\ z + \frac 1y & = 6z - 1 & ...(3) \end{aligned}

( 2 ) × 1 y z : y y z + 1 x y z = 29 y z 1 z + 1 = 29 y z 1 + z z = 29 y z 1 + z = 29 y Both sides add 29 z . 1 + 30 z = 29 ( z + 1 y ) . . . ( 4 ) \begin{aligned} (2)\times \frac 1{yz}: \quad \frac y{yz} + \frac 1{xyz} & = \frac {29}{yz} \\ \frac 1z + 1 & = \frac {29}{yz} \\ \frac {1+z}z & = \frac {29}{yz} \\ 1 + z & = \frac {29}y & \small \color{#3D99F6} \text{Both sides add }29z. \\ 1 + 30z & = 29 \left(z + \frac 1y\right) & ...(4) \end{aligned}

We note that 29 ( 3 ) = ( 4 ) 29(3) = (4) :

29 ( 6 z 1 ) = 1 + 30 z 174 z 29 = 1 + 30 z 144 z = 30 z = 5 24 ( 3 ) : z + 1 y = 6 z 1 = 6 × 5 24 1 = 1 4 \begin{aligned} \implies 29(6z-1) & = 1 + 30z \\ 174z - 29 & = 1 + 30 z \\ 144 z & = 30 \\ \implies z & = \frac 5{24} \\ (3): \quad z + \frac 1y & = 6z - 1 \\ & = 6 \times \frac 5{24} - 1 \\ & = \frac 14 \end{aligned}

m + n = 1 + 4 = 5 \implies m+n = 1+4 = \boxed{5}

Tapas Mazumdar
Dec 22, 2016

First of all, in the first equation,

x + 1 z = 5 z x + 1 z = 5 1 y + 1 1 x y = 5 ( 1 + y ) x = 5 x = 5 1 + y \begin{aligned} & x + \dfrac 1z = 5 \\ \implies & \dfrac{zx+1}{z} = 5 \\ \implies & \dfrac{\frac 1y + 1}{\frac{1}{xy}} = 5 \\ \implies & (1+y)x = 5 \\ \implies & x = \dfrac{5}{1+y} \end{aligned}

Substituting x x with this expression in the next equation, we obtain

y + 1 x = 29 y + 1 + y 5 = 29 y = 24 \begin{aligned} & y + \dfrac 1x = 29 \\ \implies & y + \dfrac{1+y}{5} = 29 \\ \implies & y = 24 \end{aligned}

So,

x = 5 1 + y = 5 25 = 1 5 x = \dfrac{5}{1+y} = \dfrac{5}{25} = \dfrac 15

And,

x + 1 z = 5 1 5 + 1 z = 5 1 z = 24 5 z = 5 24 \begin{aligned} & x + \dfrac 1z = 5 \\ \implies & \dfrac 15 + \dfrac 1z = 5 \\ \implies & \dfrac 1z = \dfrac{24}{5} \\ \implies & z = \dfrac{5}{24} \end{aligned}

Finally,

z + 1 x = 5 24 + 1 24 = 6 24 = 1 4 = m n z + \dfrac 1x = \dfrac{5}{24} + \dfrac{1}{24} = \dfrac{6}{24} = \dfrac 14 = \dfrac mn

Thus, m + n = 1 + 4 = 5 m+n = 1+4 = \boxed{5}

Matthew Riedman
Dec 20, 2016

Multiplying the equations, we get

( x + 1 z ) ( y + 1 x ) ( z + 1 y ) = \left(x+\frac{1}{z}\right)\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)=

x y z + x + y + z + 1 x + 1 y + 1 z + 1 x y z = xyz+x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xyz}=

1 + x + y + z + x y + y z + x z x y z + 1 = 1+x+y+z+\frac{xy+yz+xz}{xyz}+1=

x + y + z + x y + y z + x z + 2 = x+y+z+xy+yz+xz+2=

25 5 m n 25\cdot 5\cdot \frac{m}{n}

Adding the equations, we get:

( x + 1 z ) + ( y + 1 x ) + ( z + 1 y ) = \left(x+\frac{1}{z}\right)+\left(y+\frac{1}{x}\right)+\left(z+\frac{1}{y}\right)=

x + y + z + x y + y z + x z x y z = x+y+z+\frac{xy+yz+xz}{xyz}=

x + y + z + x y + y z + x z = x+y+z+xy+yz+xz=

29 + 5 + m n 29+5+\frac{m}{n}

Letting x + y + z + x y + x z + y z = a x+y+z+xy+xz+yz=a , we get:

a + 2 = 145 m n a+2=145\frac{m}{n}

a = 34 + m n a=34+\frac{m}{n}

Subtracting the equations,

2 = 144 m n 34 2=144\frac{m}{n}-34

144 m n = 36 144\frac{m}{n}=36

m n = 1 4 \frac{m}{n}=\frac{1}{4}

m + n = 1 + 4 = 5 m+n=1+4=\boxed{5}

Did the same way

I Gede Arya Raditya Parameswara - 4 years, 5 months ago
Joel Tan
Dec 28, 2016

Note the following identity.

( x + 1 z ) ( y + 1 x ) ( z + 1 y ) ( x + 1 z ) ( y + 1 x ) ( z + 1 y ) = x y z + 1 x y z (x+\frac {1}{z})(y+\frac {1}{x})(z+\frac {1}{y})-(x+\frac {1}{z})-(y+\frac {1}{x})-(z+\frac {1}{y})=xyz+\frac {1}{xyz}

Thus if z + 1 y = A z+\frac {1}{y}=A then ( 5 ) ( 29 ) A 5 29 A = 2 (5)(29)A-5-29-A=2 . Solving, A = 1 4 A=\frac {1}{4} and the answer is 1 + 4 = 5 1+4=5 .

Cláudio Dias
Dec 21, 2016

By multiplying the first two "reciprocal-summation" identities: ( x + 1 z = 5 ) × ( y + 1 x = 29 ) (x+\frac{1}{z}=5)\times (y+\frac{1}{x}=29)

Gives y ( x + 1 z ) + 1 + 1 x z = 145 y(x+\frac{1}{z})+1+\frac{1}{xz}=145

But, we know that x y z = 1 xyz=1 , i.e., 1 x z = y \frac{1}{xz}=y , and x + 1 z = 5 x+\frac{1}{z}=5 .

Therefore, by substituting in the above expression, we conclude that 6 y = 144 6y=144 or y = 24 y=24 and, by the previous identities: x = 1 5 x=\frac{1}{5} ; and z = 5 24 z=\frac{5}{24} .

Hence, z + 1 y = 5 24 + 1 24 = 1 4 z+\frac{1}{y}=\frac{5}{24}+\frac{1}{24}=\frac{1}{4} .

So, m + n = 1 + 4 = 5 m+n=1+4=5 .

Raj Bunsha
Dec 21, 2016

First we need to substitute the value of x in terms of y and z and then substitute the value of x and the find the answer

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...