Algebraic Manipulation

Algebra Level 2

If ( r + 1 r ) 2 = 3 \Big(r+\dfrac{1}{r}\Big)^{2} = 3 , then r 3 + 1 r 3 r^{3}+\dfrac{1}{r^{3}} equals

2 0 1 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Yang Cheng
Nov 4, 2014

r 3 + 1 r 3 = ( r + 1 r ) ( r 2 r 1 r + 1 r 2 ) = ( r + 1 r ) ( r 2 + 1 r 2 1 ) = ( r + 1 r ) [ ( r + 1 r ) 2 2 1 ] = ( r + 1 r ) ( 3 2 1 ) = 0 \begin{aligned} r^3+ \dfrac{1}{r^3} & = \left ( r+ \dfrac{1}{r} \right ) \left (r^2- r \cdot \dfrac{1}{r} + \dfrac{1}{r^2} \right ) \\ & = \left ( r+ \dfrac{1}{r} \right ) \left( r^2 + \dfrac{1}{r^2}-1 \right ) \\ & = \left ( r+ \dfrac{1}{r} \right ) \left [ \left (r+ \dfrac{1}{r} \right )^2 -2-1 \right ] \\ & = \left ( r+ \dfrac{1}{r} \right ) \left ( 3-2-1 \right ) \\ &= 0 \\ \end{aligned}

Naveen Chandra
Nov 3, 2014

from given equation , we get r + 1/r = root(3)...........so using ( r+1/r )^3 = r^3 +1/r^3 +3 r 1/r*( r+1/r)....... by putting value of r+1/r in above formula....we get r^3 + 1/r^3 = 0

Chew-Seong Cheong
Jan 15, 2015

( r + 1 r ) 2 = 3 r 2 + 2 + 1 r 2 = 3 r 2 + 1 r 2 = 1 \left( r+\dfrac {1}{r} \right)^2 = 3\quad \Rightarrow r^2 + 2 + \dfrac {1}{r^2} = 3\quad \Rightarrow r^2 + \dfrac {1}{r^2} = 1

Now, we have:

r 3 + 1 r 3 = ( r + 1 r ) ( r 2 + 1 r 2 1 ) = ( r + 1 r ) ( 1 1 ) r^3 + \dfrac {1}{r^3} = \left( r + \dfrac {1}{r} \right) \left( r^2 + \dfrac {1}{r^2} - 1\right) = \left( r + \dfrac {1}{r} \right) \left( 1 - 1 \right)

= ( r + 1 r ) ( 0 ) = 0 \quad \quad \quad \quad = \left( r + \dfrac {1}{r} \right) \left( 0 \right) = \boxed{0}

r + 1/r = \sqrt{3}

r^2 + 2 + 1/r^2 = 3

r^2 + 1/r^2 = 1

r^3 + 1/ r^3 = (r + 1/r)(r^2 + 1/r^2 -1)

(\sqrt{3})(1-1)

(\sqrt{3})(0) = 0

Adiraju Uttej
Nov 14, 2014

the given question is in the form of (a+b)^3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...