Algebraic manipulations

Algebra Level 2

Given x + y = 5 x+y=5 and 1 x + 1 y = 1 \dfrac{1}{x}+\dfrac{1}{y} = 1 , determine x 3 + y 3 x^3 + y^3


The answer is 50.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

10 solutions

Josh Speckman
Apr 19, 2014

Change 1 x + 1 y = 1 \dfrac{1}{x}+\dfrac{1}{y}=1 to the form x + y x y = 1 \dfrac{x+y}{xy}=1 , or x + y = x y x+y=xy . Knowing x + y x+y , we can determine that x y = 5 xy=5 . Now, we factor x 3 + y 3 x^3+y^3 into ( x + y ) ( x 2 + y 2 x y ) (x+y)(x^2+y^2-xy) . Expand ( x + y ) 2 = 5 2 = 25 (x+y)^2=5^2=25 to x 2 + y 2 + 2 x y = 25 x^2+y^2+2xy=25 and substitute x y xy to find x 2 + y 2 + 10 = 25 x^2+y^2+10=25 , so x 2 + y 2 = 15 x^2+y^2=15 . Now, we substitute to find that our answer is ( 5 ) ( 15 5 ) = 5 10 = 50 (5)(15-5) = 5 \cdot 10 = \fbox{50}

@Josh Speckman I guess you can do it more simply this way --->

x + y = 5 x+y=5 ...(i)

1 x + 1 y = 1 x + y x y = 1 x y = 5 \frac{1}{x}+\frac{1}{y}=1 \implies \frac{x+y}{xy}=1 \implies xy=5 ... (ii) [from (i)]

Now, x 3 + y 3 = ( x + y ) 3 3 x y ( x + y ) = 5 3 3 × 5 × 5 = 125 75 = 50 x^3+y^3=(x+y)^3-3xy(x+y)=5^3-3\times 5\times 5 = 125-75=\boxed{50}

P.S. -- I just saw that @Alan Enrique Ontiveros Salazar solved it in the same way...I simply wasted time writing it all over in the comments again before checking out the other solutions... :P

Prasun Biswas - 7 years, 1 month ago

so nice tricking algebra :D I've tried find the answer and can't -_-

Putri Rizky L - 7 years ago

why does x+y = xy?

Jonathan Moey - 7 years, 1 month ago

Log in to reply

Multiply both sides by xy so xy × 1 becomes xy and x + y/ xy × xy will cancel out the xy

Muta Ibn Ibn Danyaro - 7 years ago
Finn Hulse
Apr 19, 2014

I like all other solutions from @Josh Speckman , @Alan Enrique Ontiveros Salazar , and @Mahdi Al-kawaz . I have an interesting approach that differs from your straightforward approach. We can start off the same, by condensing the second equation to x + y x y = 1 \frac{x+y}{xy}=1 . Then, by substituting the first equation into the numerator, it appears that 5 x y = 1 x y = 5 \frac{5}{xy}=1 \Longrightarrow xy=5 . Instead of now manipulating x 3 + y 3 x^3+y^3 , remember Vieta's Formulas. Using these rules, we can construct a quadratic such that its roots are x x and y y . This is simply a 2 5 a + 5 = 0 a^2-5a+5=0 . Now, we can use Newton's Sums to find x 3 + y 3 x^3+y^3 . This is one of my favorite tricks, and applying this produces 50 \boxed{50} . Enjoy! :D

Very nice strategy for your solution!

Alan Enrique Ontiveros Salazar - 7 years, 1 month ago

Log in to reply

Thanks man! Yours too! :D

Finn Hulse - 7 years, 1 month ago

Artist:D

Mahdi Al-kawaz - 7 years, 1 month ago

Log in to reply

:D

Finn Hulse - 7 years, 1 month ago

Rewrite the second equation by multiplying both sides with x y xy : x y = x + y xy=x+y Replace with the value of x + y = 5 x+y=5 : x y = 5 xy=5 Now, rewrite x 3 + y 3 x^{3}+y^{3} as ( x + y ) 3 3 x y ( x + y ) (x+y)^{3}-3xy(x+y) , so: x 3 + y 3 = ( x + y ) 3 3 x y ( x + y ) x^{3}+y^{3}=(x+y)^{3}-3xy(x+y) And replace with the known values: x 3 + y 3 = ( 5 ) 3 3 ( 5 ) ( 5 ) x^{3}+y^{3}=(5)^{3}-3(5)(5) x 3 + y 3 = 125 75 x^{3}+y^{3}=125-75 x 3 + y 3 = 50 x^{3}+y^{3}=\boxed{50}

Mahdi Al-kawaz
Apr 19, 2014

1 x + 1 y = 1 x y = 5 \frac {1}{x}+\frac{1}{y}=1 \Rightarrow xy=5

( x + y ) 3 = 125 (x+y)^{3}=125 x 3 + y 3 = 125 3 x y ( x + y ) x^{3}+y^{3}=125-3xy(x+y) x 3 + y 3 = 125 75 = 50 x^{3}+y^{3}=125-75=\boxed {50}

Curtis Clement
Dec 22, 2014

1 x \frac{1}{x} + 1 y \frac{1}{y} = x + y x y \frac{x+y}{xy} = 1, so x+y= xy =5 (1). Using binomial expansion (i.e. the 3rd row of pascals triangle), we produce the following identity: x 3 x^{3} + y 3 y^{3} = ( x + y ) 3 (x+y)^{3} - 3 x 2 x^{2} y - 3 y 2 y^{2} x {x} = ( x + y ) 3 (x+y)^{3} -3xy(x+y) = 5 3 5^{3} - (3X5X5) = 125-75 = 50 \boxed{50}

Saurabh Mallik
Aug 18, 2014

Given:

x + y = 5 x+y=5

1 x + 1 y = 1 \frac{1}{x}+\frac{1}{y}=1

Solving this equation, we get:

x + y x y = 1 \frac{x+y}{xy}=1

Putting x + y = 5 x+y=5 , we get:

5 x y = 1 \frac{5}{xy}=1

x y = 5 xy=5

Now,

x 3 + y 3 = ( x + y ) 3 3 x y ( x + y ) x^{3}+y^{3}=(x+y)^{3}-3xy(x+y)

Substituting values, we get:

x 3 + y 3 = 5 3 3 × 5 × 5 x^{3}+y^{3}=5^{3}-3\times5\times5

x 3 + y 3 = 125 75 x^{3}+y^{3}=125-75

x 3 + y 3 = 50 x^{3}+y^{3}=50

Thus, the answer is: x 3 + y 3 = 50 \boxed{x^{3}+y^{3}=50}

Prithviraj Pachal
May 11, 2014

X+Y=5, 1/X+1/Y=1 OR, (X+Y)/XY =1 OR, XY=5, (X+Y)^3 -3XY(X+Y) =X^3+Y^3 = 5^3-(3 5 5)=125-75=50

Mahabubur Rahman
May 2, 2014

Here, x+y=5, and xy=5, (x+y)^3-3xy(x+y), =, 125-3 5 5 = 50

Arjun Rock
Apr 20, 2014

x+y=5 xy=x+y=5 (x+y)^3=125 x^3+3x^2y+3xy^2+y^3=125 x^3+y^3+3xy(x+y)=125 x^3+y^3+3 5 5=125 x^3+y^3=50

Danang AchSa
Apr 19, 2014

paragraph 1 x + y = 5 \frac{1}{x} + \frac{1}{y} = 1 \frac{x+y}{xy} = 1 xy = 5

paragraph 2 x^{2} + y^{2} = (x + y)^{2} - 2xy x^{2} + y^{2} = 5^{2} - 2(5) x^{2} + y^{2} = 25 - 10 x^{2} + y^{2} = 15

paragraph 3 x^{3} + y^{3} = (x + y)(x^{2} - xy + y^{2}) x^{2} + y^{2} = (5)(15-5) x^{2} + y^{2} = 5(10) x^{2} + y^{2} = 50

solved it's very simple .-.

Try putting all your math inside these brackets \ ( \ ) but don't leave spaces in between them like I did.

For example: \ ( 2+3 \ ) becomes 2 + 3 2+3 .

Mursalin Habib - 7 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...