Algebraic Mess!

Algebra Level 5

The number of integral solution(s) the two inequalities

5 < 2 x 1 < 2 2 α β γ y α 3 + β 3 + γ 3 \begin{aligned} -5 < & 2x-1 & < 2 \sqrt{2} \\ \alpha \beta \gamma \leq & y& \leq \alpha^3 + \beta^3 + \gamma^3 \\ \end{aligned}

are p p and q q respectively.

Given that

1 α + 1 β + 1 γ = 1 2 1 α 2 + 1 β 2 + 1 γ 2 = 9 4 α + β + γ = 2 \begin{aligned} \dfrac{1}{\alpha} + \dfrac{1}{\beta} + \dfrac{1}{\gamma} & = & \dfrac{1}{2} \\ \dfrac{1}{\alpha^2} + \dfrac{1}{\beta^2} + \dfrac{1}{\gamma^2} & = & \dfrac{9}{4} \\ \alpha + \beta + \gamma & = & 2 \\ \end{aligned}

What is the value of p q ? \lvert p-q\rvert?

This problem is an extension to the note: Solving Linear Inequalities from the set: Inequalities


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aditya Raut
Jul 22, 2014

We see that the first equation is equivalent to 4 < 2 x < 2 2 + 1 -4<2x<2\sqrt{2}+1 and this gives 2 < x < 2 -2<x< 2 ( \color{#D61F06}{\biggl(} because 1 < 2 2 + 1 2 < 2 ) \color{#D61F06}{1< \dfrac{2\sqrt{2}+1}{2} < 2 \biggr)} . Hence there will be 3 3 integral values of x x possible.

In the seconds equation, by solving the three equations and three variables, we get that unordered ( α , β , γ ) = ( 1 , 1 , 2 ) \color{#3D99F6}{\text{unordered}(\alpha,\beta,\gamma) = (-1,1,2)} . (This means that there maybe different permutations, but values will be these only).

Thus the second condition, i.e. for y y is transformed to

α β γ y α 3 + β 3 + γ 3 2 y 8 \alpha \beta \gamma \leq y \leq \alpha^3+ \beta^3 + \gamma^3 \implies -2\leq y \leq 8

Hence there are 11 11 integer values of y y possible and

p q = 3 11 = 8 \Huge{\color{#20A900}{|p-q|= |3-11| = \boxed{8}}}

Since you didn't show how you solved the system of equations, I'm going to show how I did it, maybe it can be useful for someone. Let us think in 1 α , 1 β \frac{1}{\alpha}, \frac{1}{\beta} and 1 γ \frac{1}{ \gamma} as roots of a cubic polynomial: p ( x ) = x 3 + A x 2 + B x + C p(x)=x^{3}+Ax^{2}+Bx+C We know, at first, that: S 1 = 1 2 , S 2 = 9 4 , S 1 = 2 S_{1}=\frac{1}{2}, S_{2}=\frac{9}{4}, S_{-1}=2 By Newton's and Vieta's relations, we get: A = 1 2 , B C = 2 B = 2 C -A=\frac{1}{2}, \frac{-B}{C}=2 \Rightarrow B=-2C S 2 + A S 1 + B S 0 + C S 1 = 0 S_{2}+AS_{1}+BS_{0}+CS_{-1}=0 9 4 + ( 1 2 ) ( 1 2 ) + 3 ( 2 C ) + 2 C = 0 \frac{9}{4}+\left(\frac{1}{2}\right)\left(\frac{-1}{2}\right)+3(-2C)+2C=0 C = 1 2 , B = 1 , C = 1 2 \therefore C=\frac{1}{2}, B=-1, C=\frac{1}{2} p ( x ) = x 3 1 2 x 2 x + 1 2 p(x)=x^{3}-\frac{1}{2}x^{2}-x+\frac{1}{2} p ( x ) = x 3 1 2 ( x + 1 ) 2 + 1 p(x)=x^{3}-\frac{1}{2}(x+1)^{2}+1 p ( x ) = ( x + 1 ) ( x 2 x + 1 ) 1 2 ( x + 1 ) 2 \Rightarrow p(x)=(x+1)(x^{2}-x+1)-\frac{1}{2}(x+1)^{2} p ( x ) = ( x + 1 ) ( x 2 3 2 x + 1 2 ) p(x)=(x+1)\left(x^{2}-\frac{3}{2}x+\frac{1}{2}\right) p ( x ) = ( x + 1 ) ( x 1 ) ( x 1 2 ) p(x)=(x+1)(x-1)\left(x-\frac{1}{2}\right) 1 α = 1 , 1 β = 1 1 γ = 1 2 α = 1 , β = 1 , γ = 2. \therefore \frac{1}{\alpha}=1, \frac{1}{\beta}=-1 \frac{1}{\gamma}=\frac{1}{2}\Rightarrow \alpha=1, \beta=-1, \gamma=2.

Dieuler Oliveira - 6 years, 10 months ago
Arif Ahmed
Oct 1, 2014

For the first one : 2 < x < 1.91 -2<x<1.91 Therefore integral solutions for x are { 1 , 0 , 1 } \{-1,0,1\}

Finding the individual values of α , β , γ \alpha, \beta ,\gamma is not required , playing around with the three given expressions yields values of α β γ \alpha\beta\gamma and α 3 + β 3 + γ 3 {\alpha }^{3} + {\beta}^{3} + {\gamma}^{3} .

α 3 + β 3 + γ 3 {\alpha }^{3} + {\beta}^{3} + {\gamma}^{3}

= ( α + β + γ ) ( α 2 + β 2 + γ 2 α β β γ γ α ) + 3 α β γ = (\alpha + \beta + \gamma)({\alpha}^{2} + {\beta}^{2} + {\gamma}^{2} - \alpha\beta - \beta\gamma - \gamma\alpha) + 3\alpha\beta\gamma

= 2 ( 4 3 ( α β + β γ + γ α ) ) + 3 α β γ = \quad 2(4 - 3(\alpha\beta + \beta\gamma + \gamma\alpha)) + 3\alpha\beta\gamma

= 2 ( 4 3 α β γ 2 ) + 3 α β γ =\quad 2(4 - \frac {3\alpha\beta\gamma}{2}) + 3\alpha\beta\gamma

= 8 =\quad 8

Finding α β γ \alpha\beta\gamma : First expression can be written as : α β + β γ + γ α = α β γ 2 \alpha\beta+\beta\gamma+\gamma\alpha = \frac{\alpha\beta\gamma}{2}

Second expression : α 2 β 2 + β 2 γ 2 + γ 2 α 2 = 9 4 α 2 β 2 γ 2 { \alpha }^{ 2 }{ \beta }^{ 2 }+{ \beta }^{ 2 }{ \gamma }^{ 2 }+{ \gamma }^{ 2 }{ \alpha }^{ 2 }=\frac { 9 }{ 4 } { \alpha }^{ 2 }{ \beta }^{ 2 }{ \gamma }^{ 2 }

Squaring both sides of first expression : α 2 β 2 + β 2 γ 2 + γ 2 α 2 + 2 α β γ ( α + β + γ ) = α 2 β 2 γ 2 4 { \alpha }^{ 2 }{ \beta }^{ 2 }+{ \beta }^{ 2 }{ \gamma }^{ 2 }+{ \gamma }^{ 2 }{ \alpha }^{ 2 }+2\alpha \beta \gamma (\alpha +\beta +\gamma )=\frac { { \alpha }^{ 2 }{ \beta }^{ 2 }{ \gamma }^{ 2 } }{ 4 }

Using second equation we eventually get : α β γ = 2 \alpha\beta\gamma = -2 Therefore , 2 y 8 -2 \le y\le 8 and no. of integral solutions of y is 11 11

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...