Algebraic or Not

Calculus Level 3

A complex number α \alpha is an algebraic number if it is a root of a polynomial with integral coefficients. Is 1 π 0 1 1 + x 16 d x \frac 1\pi\int_0^\infty\frac 1{1+x^{16}}\, dx an algebraic number?

No Yes

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

I = 0 1 1 + x 16 d x Let tan θ = x 8 sec 2 θ d θ = 8 x 7 d x = 0 π 2 1 8 tan 7 8 θ d θ = 1 8 0 π 2 sin 7 8 θ cos 7 8 θ d θ Beta function B ( m , n ) = 2 0 sin 2 m 1 ( t ) cos 2 n 1 ( t ) d t = 1 16 B ( 1 16 , 15 16 ) and B ( m . n ) = Γ ( m ) Γ ( n ) Γ ( m + n ) , Γ ( ) is gamma function. = Γ ( 1 16 ) Γ ( 15 16 ) 16 Γ ( 1 ) Note that Γ ( s ) Γ ( 1 s ) = π sin π s = π 16 sin π 16 \begin{aligned} I & = \int_0^\infty \frac 1{1+x^{16}} dx & \small \blue{\text{Let }\tan \theta = x^8 \implies \sec^2 \theta\ d\theta = 8x^7\ dx} \\ & = \int_0^\frac \pi 2 \frac 1{8 \tan^\frac 78 \theta} d\theta \\ & = \frac 18 \int_0^\frac \pi 2 \sin^{-\frac 78} \theta \cos^\frac 78 \theta \ d \theta & \small \blue{\text{Beta function }\text B(m,n) = 2 \int_0^\infty \sin^{2m-1} (t) \cos^{2n-1}(t)\ dt} \\ & = \frac 1{16} \text B\left(\frac 1{16}, \frac {15}{16}\right) & \small \blue{\text{and B}(m.n) = \frac {\Gamma (m)\Gamma(n)}{\Gamma(m+n)}, \Gamma (\cdot) \text{ is gamma function.}} \\ & = \frac {\Gamma \left(\frac 1{16}\right)\Gamma\left(\frac {15}{16}\right)}{16\Gamma (1)} & \small \blue{\text{Note that }\Gamma(s) \Gamma(1-s) = \frac \pi{\sin \pi s}} \\ & = \frac \pi {16 \sin \frac \pi{16}} \end{aligned}

Therefore I π = 1 16 csc π 16 \dfrac I\pi = \dfrac 1{16} \csc \dfrac \pi{16} , which is an algebraic number if csc π 16 \csc \dfrac \pi{16} is an algebraic number. Consider the following:

cos π 4 = 1 2 2 cos 2 π 8 1 = 1 2 2 ( 1 2 sin 2 π 16 ) 2 1 = 1 2 Let csc π 16 = x 2 ( 1 2 x 2 ) 2 1 = 1 2 2 ( x 2 2 ) 4 x 4 1 = 1 2 Multiply both sides by x 4 2 ( x 4 4 x 2 + 4 ) x 4 = x 4 2 x 4 8 x 2 + 8 = x 4 2 Squaring both sides x 8 16 x 6 + 80 x 4 128 x 2 + 64 = x 8 2 Rearranging x 8 32 x 6 + 160 x 4 256 x 2 + 128 = 0 Minimal polynomial \begin{aligned} \cos \frac \pi 4 & = \frac 1{\sqrt 2} \\ 2\cos^2 \frac \pi 8 - 1 & = \frac 1{\sqrt 2} \\ 2\left(1-2\sin^2 \frac \pi{16}\right)^2 - 1 & = \frac 1{\sqrt 2} & \small \blue{\text{Let }\csc \frac \pi{16}=x} \\ 2\left(1- \frac 2{x^2} \right)^2 - 1 & = \frac 1{\sqrt 2} \\ \frac {2(x^2-2)^4}{x^4} - 1 & = \frac 1{\sqrt 2} & \small \blue{\text{Multiply both sides by }x^4} \\ 2(x^4-4x^2+4) - x^4 & = \frac {x^4}{\sqrt 2} \\ x^4-8x^2+8 & = \frac {x^4}{\sqrt 2} & \small \blue{\text{Squaring both sides}} \\ x^8-16x^6 + 80x^4 -128x^2 + 64 & = \frac {x^8}2 & \small \blue{\text{Rearranging}} \\ x^8 -32x^6 + 160x^4 -256x^2 + 128 & = 0 & \small \blue{\text{Minimal polynomial}} \end{aligned}

Yes , I π \dfrac I\pi is an algebraic number since csc π 16 \csc \dfrac \pi {16} is an algebraic number.


References:

The integral is 1 16 sin ( π / 16 ) \dfrac{1}{16\sin(\pi/16)} , which comes from a standard application of contour integration.

Now, 1 2 = cos ( π / 4 ) = 2 cos 2 ( π / 8 ) 1 = 2 ( 1 2 sin 2 ( π / 16 ) ) 2 1 \dfrac{1}{\sqrt{2}}=\cos(\pi/4)=2\cos^{2}(\pi/8)-1=2(1-2\sin^{2}(\pi/16))^{2}-1 and by squaring this expression, we get that sin ( π / 16 ) \sin(\pi/16) is algebraic.

Then, one can prove easily that an algebraic number divided by an integer is also algebraic. And 1 α \dfrac{1}{\alpha} is algebraic if α \alpha is algebraic and non zero. And so, the result follows.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...