Algebraic ratio

Algebra Level 2

True or false?

If a b + c = b a + c = c a + b \dfrac a{b+c} = \dfrac b{a+c} = \dfrac c{a+b} and a b c a \ne b \ne c then the value of every ratio must be 1 -1 or 0.5 0.5

False True

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Munem Shahriar
Aug 1, 2018

Let's assume a b + c = b a + c = c a + b = k \dfrac a{b+c} = \dfrac b{a+c} = \dfrac c{a+b} = k

Now

  • a b + c = k a = k b + k c . . . . . . ( 1 ) \dfrac a{b+c} = k \implies a = kb+kc ~~~......(1)
  • b a + c = k b = k a + k c . . . . . . ( 2 ) \dfrac b{a+c} = k \implies b = ka + kc ~~~......(2)
  • c a + b = k c = k a + k b . . . . . ( 3 ) \dfrac c{a+b} = k \implies c = ka + kb ~~~.....(3)

( 1 ) + ( 2 ) + ( 3 ) : (1) + (2) + (3):

a + b + c = k b + k c + k a + k c + k a + k b a + b + c = k ( a + b + c + a + b + c ) a + b + c = k ( 2 a + 2 b + 2 c ) a + b + c 2 ( a + b + c ) = k k = 1 2 k = 0.5 \begin{aligned} a +b + c & = kb + kc + ka + kc + ka + kb \\ \Rightarrow a + b + c & = k(a+b + c + a+ b+ c) \\ \Rightarrow a + b + c & = k(2a + 2b +2c) \\ \Rightarrow \dfrac{a + b + c}{2(a + b + c)} & = k \\ \Rightarrow k & = \dfrac 12 \\ \implies k & = 0.5 \\ \end{aligned}

( 1 ) ( 2 ) : (1) -(2):

a c = k b + k c k a k c a b = k ( b + c a c ) a b = k ( b a ) a b = k ( a b ) k = 1 \begin{aligned} a - c & = kb+kc - ka - kc\\ \Rightarrow a - b & = k(b + c - a -c) \\ \Rightarrow a - b & = k(b - a) \\ \Rightarrow a - b & = - k(a- b) \\ \implies k & = -1 \\ \end{aligned}

The answer is true.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...