Algebraic Rooting #5

Algebra Level 3

The least value of the expression 2 l o g 10 x l o g x ( 0.01 ) 2log_{10}x-log_x(0.01) for x > 1 x>1 is :-


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Parag Zode
Dec 31, 2014

We see that 2 l o g 10 x l o g x ( 10 ) ( 2 ) = 2 l o g 10 x + 2 l o g x 10 2log_{10}x-log_x(10)^{(-2)}=2log_{10}x+2log_x10 = 2 l o g 10 x + 2 1 l o g 10 x =2log_{10}x+2\dfrac{1}{log_{10}}x = 2 ( l o g 10 x + 1 l o g 10 x ) =2\bigg(log_{10}x+\dfrac{1}{log_{10}x}\bigg) Using A M G M AM\ge{GM} ,we get :- l o g 10 x + 1 l o g 10 x 2 ( l o g 10 x . 1 l o g 10 x ) 1 / 2 \dfrac{log_{10}x+\dfrac{1}{log_{10}x}}{2}\ge\bigg(log_{10}x.\dfrac{1}{log_{10}x}\bigg)^{1/2} l o g 10 x + 1 l o g 10 x 2 \implies log_{10}x+\dfrac{1}{log_{10}x}\ge{2} or 2 l o g 10 x l o g x ( 0.01 ) 4 2log_{10}x-log_x(0.01)\ge{4} So ,least value is 4 \boxed{4} . ¨ \ddot\smile

The idea is quite good, but you also have to reason why equality holds in the AM-GM inequality for some value of x x .

José Miguel Manzano - 6 years, 4 months ago
Mikael Marcondes
Mar 16, 2015

( a 1 ) 2 0 , a R + (a-1)^{2} \geq {0},\ \forall {a} \in \mathbb{R^{+}}

a 2 2 a + 1 0 a 2 + 1 2 a \implies a^{2}-2a+1 \geq {0} \implies a^{2}+1 \geq 2a

a + 1 a 2 positive real numbers property \implies \boxed{a+\frac{1}{a} \geq 2} \text{positive real numbers property}

E ( x ) = 2 l o g 10 x l o g x 0.01 = 2 ( l o g 10 x + l o g x 10 ) E(x)=2 \cdot{log_{10}{x}}-log_{x}{0.01}=2 \cdot(log_{10}{x}+log_{x}{10})

y = l o g x 10 x y = 10 ( x y ) 1 y = 1 0 1 y x = 1 0 1 y l o g 10 x = 1 y \boxed{y=log_{x}{10}} \rightarrow x^{y}=10 \rightarrow (x^{y})^{\frac{1}{y}}=10^{\frac{1}{y}} \rightarrow x=10^{\frac {1}{y}} \rightarrow \boxed{log_{10}{x}=\frac{1}{y}}

Substituting, comes:

E ( x ) = 2 [ 1 y ( x ) + y ( x ) ] E(x)=2 \cdot {\displaystyle{[\frac{1}{y(x)}+y(x)]}}

Hence, verified existential conditions, minimum is:

m i n [ E ( x ) ] = 2 2 = 4 min[E(x)]=2 \cdot{2}=\boxed{4}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...