This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Observing the Maclaurin Series of trigonometric functions, we can conclude that,
x → 0 ⟹ x → sin x , x → tan x , sin x < x < tan x ⟹ x sin x → 1 − , x tan x → 1 + ⟹ x a sin x → a − , x b tan x → b + ∀ a , b ∈ N
Now, we begin to evaluate the limit using the results obtained.
x → 0 lim ( ⌊ x a sin x ⌋ + ⌊ x b tan x ⌋ ) = x → 0 lim ( ⌊ a − ⌋ + ⌊ b + ⌋ ) = x → 0 lim ( ( a − 1 ) + ( b ) ) = a + b − 1
The Maclaurin series for the two trigonometric functions are:
sin x = x − 3 ! x 3 + 5 ! x 5 − 7 ! x 7 + … = i = 0 ∑ ∞ ( 2 i + 1 ) ! ( − 1 ) i x 2 i + 1 tan x = x + 3 x 3 + 1 5 2 x 5 + 3 1 5 1 7 x 7 + … = i = 0 ∑ ∞ ( 2 i + 2 ) ! ( − 1 ) i 2 2 i + 2 ( 2 2 i + 2 − 1 ) B 2 i + 2 x 2 i + 1
where B n is a Bernoulli number (defined only for even index).