Algrabric manipulation

Algebra Level 3

a , b , c , d a,b,c,d are positive numbers such that

{ a 2 + b 2 = c 2 + d 2 a 2 + d 2 a d = b 2 + c 2 + b c \begin{cases} a^2+b^2=c^2+d^2 \\ a^2+d^2-ad=b^2+c^2+bc \end{cases}

Find the value of a b + c d a d + b c \dfrac{ab+cd}{ad+bc} .


The answer is 0.866.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chris Lewis
Dec 4, 2020

To satisfy the first equation and the quantities being positive, let a = r cos θ a=r \cos \theta , b = r sin θ b=r \sin \theta , c = r cos ϕ c=r \cos \phi and d = r sin ϕ d=r \sin \phi , where r > 0 r>0 and θ \theta and ϕ \phi are in the interval ( 0 , π 2 ) \left(0,\frac{\pi}{2}\right) .

The second equation then becomes r 2 cos 2 θ + r 2 sin 2 ϕ r 2 cos θ sin ϕ = r 2 sin 2 θ + r 2 cos 2 ϕ + r 2 cos ϕ sin θ r^2 \cos^2 \theta + r^2 \sin^2 \phi - r^2 \cos \theta \cdot \sin \phi = r^2 \sin^2 \theta + r^2 \cos^2 \phi + r^2 \cos \phi \cdot \sin \theta

Dividing through by r 2 r^2 and tidying up, we get cos 2 θ cos 2 ϕ = sin ( θ + ϕ ) \cos 2\theta-\cos 2\phi=\sin(\theta+\phi)

With a bit of manipulation, this becomes ( 2 sin ( θ ϕ ) + 1 ) sin ( θ + ϕ ) = 0 \left(2\sin(\theta-\phi)+1 \right)\sin(\theta+\phi)=0

Since 0 < θ + ϕ < π 0<\theta+\phi<\pi , we can't have sin ( θ + ϕ ) = 0 \sin(\theta+\phi)=0 ; therefore 2 sin ( θ ϕ ) + 1 = 0 2\sin(\theta-\phi)+1=0

and ϕ = θ + π 6 \phi=\theta+\frac{\pi}{6}

The quantity we want to find is x = a b + c d a d + b c = sin 2 θ + sin 2 ϕ 2 sin ( θ + ϕ ) = sin 2 θ + sin ( 2 θ + π 3 ) 2 sin ( 2 θ + π 6 ) = sin 2 θ + 3 2 cos 2 θ + 1 2 sin 2 θ cos 2 θ + 3 sin 2 θ = 3 2 \begin{aligned} x&=\frac{ab+cd}{ad+bc} \\ &=\frac{\sin 2\theta+\sin 2\phi}{2\sin(\theta+\phi)} \\ &=\frac{\sin 2\theta+\sin \left(2\theta+\frac{\pi}{3}\right)}{2\sin \left(2\theta+\frac{\pi}{6}\right)} \\ &=\frac{\sin 2\theta + \frac{\sqrt3}{2}\cos 2\theta + \frac12 \sin 2\theta}{\cos 2\theta + \sqrt3 \sin 2\theta} \\ &=\boxed{\frac{\sqrt3}{2}} \end{aligned}

Surely there's an easier way! Any suggestions?

Chris Lewis - 6 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...