Alien Inversion?

Geometry Level 4

Given that

{ tan 1 a + tan 1 b + tan 1 c = π 2 sin 1 x + sin 1 y + sin 1 z = π 2 \large \begin{cases} \tan^{-1}\sqrt{a}+\tan^{-1}\sqrt{b}+\tan^{-1}\sqrt{c}=\dfrac{\pi}{2} \\ \sin^{-1}x+\sin^{-1}y+\sin^{-1}z=\dfrac{\pi}{2} \end{cases}

If 8 x y z = 1 8xyz=1 , then find the minimum value of a 2 x + b 2 y + c 2 z \dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z} .


This is an original problem and belongs to the set My Creations .

3 2 \dfrac{3}{2} 3 4 \dfrac{3}{4} 2 3 \dfrac{2}{3} 4 3 \dfrac{4}{3}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Skanda Prasad
Nov 12, 2017

tan 1 a + tan 1 b + tan 1 c = π 2 \tan^{-1}\sqrt{a}+\tan^{-1}\sqrt{b}+\tan^{-1}\sqrt{c}=\dfrac{\pi}{2} a b + b c + c a = 1 \implies \sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1

sin 1 x + sin 1 y + sin 1 z = π 2 \sin^{-1}x+\sin^{-1}y+\sin^{-1}z=\dfrac{\pi}{2} x 2 + y 2 + z 2 = 1 2 x y z \implies x^2+y^2+z^2=1-2xyz

From Titu's Lemma , we have a 2 x + b 2 y + c 2 z ( a + b + c ) 2 x + y + z \dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\geq \dfrac{(a+b+c)^2}{x+y+z} .

So for a 2 x + b 2 y + c 2 z \dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z} to be minimum, ( a + b + c ) (a+b+c) should be minimum and ( x + y + z ) (x+y+z) has to be maximum.


Consider { a , b , c } and { b , c , a } \{\sqrt{a},\sqrt{b},\sqrt{c}\} \text{and} \{\sqrt{b},\sqrt{c},\sqrt{a}\}

Applying Cauchy-Schwarz Inequality we get,

( a + b + c ) 2 ( a b + b c + c a ) 2 (a+b+c)^2\geq(\sqrt{ab}+\sqrt{bc}+\sqrt{ca})^2

( a + b + c ) 1 \implies (a+b+c)\geq 1

Therefore, minimum value of ( a + b + c ) (a+b+c) is 1 \boxed{1} .


Consider { x , y , z } and { 1 , 1 , 1 } \{x,y,z\} \text{and} \{1,1,1\}

Applying Cauchy-Schwarz Inequality we get,

3 ( x 2 + y 2 + z 2 ) ( x + y + z ) 2 3(x^2+y^2+z^2)\geq(x+y+z)^2

3 ( 1 2 x y z ) ( x + y + z ) 2 3(1-2xyz)\geq(x+y+z)^2

But given that x y z = 1 8 xyz=\dfrac 18

So we obtain ( x + y + z ) 2 3 ( 1 2 8 ) (x+y+z)^2\leq3(1-\frac 28)

\implies ( x + y + z ) 2 3 ( 1 1 4 ) (x+y+z)^2\leq3(1-\frac 14)

( x + y + z ) 3 2 \implies (x+y+z)\leq\dfrac 32

Therefore, maximum value of ( x + y + z ) (x+y+z) is 3 2 \boxed{\dfrac 32}


Finally substituting the two obtained values in the required expression, we get

a 2 x + b 2 y + c 2 z ( 1 ) 2 3 2 \dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\geq\dfrac{(1)^2}{\frac 32}

a 2 x + b 2 y + c 2 z 2 3 \implies \dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\geq\dfrac{2}{3}

Hence, the minimum value of a 2 x + b 2 y + c 2 z \dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z} is 2 3 \boxed{\dfrac{2}{3}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...